Some rigidity theorems for Finsler manifolds of sectional flag curvature

Bing Ye Wu

Archivum Mathematicum (2010)

  • Volume: 046, Issue: 2, page 99-104
  • ISSN: 0044-8753

Abstract

top
In this paper we study some rigidity properties for Finsler manifolds of sectional flag curvature. We prove that any Landsberg manifold of non-zero sectional flag curvature and any closed Finsler manifold of negative sectional flag curvature must be Riemannian.

How to cite

top

Wu, Bing Ye. "Some rigidity theorems for Finsler manifolds of sectional flag curvature." Archivum Mathematicum 046.2 (2010): 99-104. <http://eudml.org/doc/37770>.

@article{Wu2010,
abstract = {In this paper we study some rigidity properties for Finsler manifolds of sectional flag curvature. We prove that any Landsberg manifold of non-zero sectional flag curvature and any closed Finsler manifold of negative sectional flag curvature must be Riemannian.},
author = {Wu, Bing Ye},
journal = {Archivum Mathematicum},
keywords = {Finsler manifold; Landsberg manifold; scalar flag curvature; sectional flag curvature; Cartan tensor; Finsler manifold; Landsberg manifold; scalar flag curvature; sectional flag curvature; Cartan tensor},
language = {eng},
number = {2},
pages = {99-104},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some rigidity theorems for Finsler manifolds of sectional flag curvature},
url = {http://eudml.org/doc/37770},
volume = {046},
year = {2010},
}

TY - JOUR
AU - Wu, Bing Ye
TI - Some rigidity theorems for Finsler manifolds of sectional flag curvature
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 2
SP - 99
EP - 104
AB - In this paper we study some rigidity properties for Finsler manifolds of sectional flag curvature. We prove that any Landsberg manifold of non-zero sectional flag curvature and any closed Finsler manifold of negative sectional flag curvature must be Riemannian.
LA - eng
KW - Finsler manifold; Landsberg manifold; scalar flag curvature; sectional flag curvature; Cartan tensor; Finsler manifold; Landsberg manifold; scalar flag curvature; sectional flag curvature; Cartan tensor
UR - http://eudml.org/doc/37770
ER -

References

top
  1. Akbar-Zadeh, H., Sur les espaces de Finsler à courbures sectionnelles constantes, Acad. Roy. Belg. Bull. Cl. Sci. (6) 74 (1988), 281–322. (1988) Zbl0686.53020MR1052466
  2. Chen, B., Zhao, L. L., Randers metrics of sectional flag curvature, Houston J. Math., to appear. MR2610781
  3. Chen, X., Mo, X., Shen, Z., 10.1112/S0024610703004599, J. London Math. Soc. 68 (2003), 762–780. (2003) Zbl1063.53078MR2010010DOI10.1112/S0024610703004599
  4. Chern, S. S., Local equivalence and Euclidean connections in Finsler spaces, Sci. Rep. Nat. Tsing Hua Univ. Ser. A5 (1948), 95–121, or Selected Papers, II, 194-212, Springer 1989. (1948) Zbl0200.00004MR0031812
  5. Chern, S. S., Shen, Z., Riemannian-Finsler geometry, World Sci., Singapore, 2005. (2005) MR2169595
  6. Mo, X., 10.1007/BF03322108, Res. Math. 36 (1999), 149–159. (1999) MR1706528DOI10.1007/BF03322108
  7. Numata, S., On Landsberg spaces of scalar curvature, J. Korean Math. Soc. 12 (1975), 97–100. (1975) Zbl0314.53017MR0402643

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.