A note on linear perturbations of oscillatory second order differential equations
Archivum Mathematicum (2010)
- Volume: 046, Issue: 2, page 105-118
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topManfrin, Renato. "A note on linear perturbations of oscillatory second order differential equations." Archivum Mathematicum 046.2 (2010): 105-118. <http://eudml.org/doc/37771>.
@article{Manfrin2010,
abstract = {Under suitable hypotheses on $\gamma (t)$, $\lambda (t)$, $q(t)$ we prove some stability results which relate the asymptotic behavior of the solutions of $u^\{\prime \prime \}+ \gamma (t)u^\{\prime \}+\big (q(t)+ \lambda (t)\big )u=0$ to the asymptotic behavior of the solutions of $u^\{\prime \prime \}+ q(t)u=0$.},
author = {Manfrin, Renato},
journal = {Archivum Mathematicum},
keywords = {second order ODE; boundedness of solutions; linear perturbations; second-order ODE; boundedness of solution; linear perturbation},
language = {eng},
number = {2},
pages = {105-118},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A note on linear perturbations of oscillatory second order differential equations},
url = {http://eudml.org/doc/37771},
volume = {046},
year = {2010},
}
TY - JOUR
AU - Manfrin, Renato
TI - A note on linear perturbations of oscillatory second order differential equations
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 2
SP - 105
EP - 118
AB - Under suitable hypotheses on $\gamma (t)$, $\lambda (t)$, $q(t)$ we prove some stability results which relate the asymptotic behavior of the solutions of $u^{\prime \prime }+ \gamma (t)u^{\prime }+\big (q(t)+ \lambda (t)\big )u=0$ to the asymptotic behavior of the solutions of $u^{\prime \prime }+ q(t)u=0$.
LA - eng
KW - second order ODE; boundedness of solutions; linear perturbations; second-order ODE; boundedness of solution; linear perturbation
UR - http://eudml.org/doc/37771
ER -
References
top- Bellman, R., 10.1215/S0012-7094-44-01146-4, Duke Math. J. 11 (1944), 513–516. (1944) Zbl0061.18503MR0010761DOI10.1215/S0012-7094-44-01146-4
- Bellman, R., Stability Theory of Differential Equations, McGraw-Hill Book Company, New York, 1953. (1953) Zbl0053.24705MR0061235
- Cesari, L., Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, 2nd ed., Springer-Verlag, Berlin, 1963. (1963) Zbl0111.08701
- Galbraith, A., McShane, E. J., Parrish, G., 10.1073/pnas.53.2.247, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 247–249. (1965) MR0174817DOI10.1073/pnas.53.2.247
- Knowles, I., 10.1016/0022-0396(79)90003-2, J. Differential Equations 34 (1979), 179–203. (1979) Zbl0388.34029MR0550039DOI10.1016/0022-0396(79)90003-2
- Manfrin, R., 10.4171/PM/1821, Portugal. Math. 65 (2008), 447–484. (2008) Zbl1160.35477MR2483347DOI10.4171/PM/1821
- Manfrin, R., 10.1619/fesi.52.255, Funkcial. Ekvac. 52 (2009), 255–279. (2009) Zbl1175.34044MR2547105DOI10.1619/fesi.52.255
- Manfrin, R., On the boundedness of solutions of the equation , Discrete Contin. Dynam. Systems 23 (2009), 991–1008. (2009) Zbl1190.34037MR2461836
- Opial, Z., Nouvelles remarques sur l’équation différentielle , Ann. Polon. Math. 6 (1959), 75–81. (1959) Zbl0085.07003MR0104864
- Trench, W. F., 10.1090/S0002-9939-1963-0142844-7, Proc. Amer. Math. Soc. 14 (1963), 12–14. (1963) MR0142844DOI10.1090/S0002-9939-1963-0142844-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.