A note on linear perturbations of oscillatory second order differential equations

Renato Manfrin

Archivum Mathematicum (2010)

  • Volume: 046, Issue: 2, page 105-118
  • ISSN: 0044-8753

Abstract

top
Under suitable hypotheses on γ ( t ) , λ ( t ) , q ( t ) we prove some stability results which relate the asymptotic behavior of the solutions of u ' ' + γ ( t ) u ' + ( q ( t ) + λ ( t ) ) u = 0 to the asymptotic behavior of the solutions of u ' ' + q ( t ) u = 0 .

How to cite

top

Manfrin, Renato. "A note on linear perturbations of oscillatory second order differential equations." Archivum Mathematicum 046.2 (2010): 105-118. <http://eudml.org/doc/37771>.

@article{Manfrin2010,
abstract = {Under suitable hypotheses on $\gamma (t)$, $\lambda (t)$, $q(t)$ we prove some stability results which relate the asymptotic behavior of the solutions of $u^\{\prime \prime \}+ \gamma (t)u^\{\prime \}+\big (q(t)+ \lambda (t)\big )u=0$ to the asymptotic behavior of the solutions of $u^\{\prime \prime \}+ q(t)u=0$.},
author = {Manfrin, Renato},
journal = {Archivum Mathematicum},
keywords = {second order ODE; boundedness of solutions; linear perturbations; second-order ODE; boundedness of solution; linear perturbation},
language = {eng},
number = {2},
pages = {105-118},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {A note on linear perturbations of oscillatory second order differential equations},
url = {http://eudml.org/doc/37771},
volume = {046},
year = {2010},
}

TY - JOUR
AU - Manfrin, Renato
TI - A note on linear perturbations of oscillatory second order differential equations
JO - Archivum Mathematicum
PY - 2010
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 046
IS - 2
SP - 105
EP - 118
AB - Under suitable hypotheses on $\gamma (t)$, $\lambda (t)$, $q(t)$ we prove some stability results which relate the asymptotic behavior of the solutions of $u^{\prime \prime }+ \gamma (t)u^{\prime }+\big (q(t)+ \lambda (t)\big )u=0$ to the asymptotic behavior of the solutions of $u^{\prime \prime }+ q(t)u=0$.
LA - eng
KW - second order ODE; boundedness of solutions; linear perturbations; second-order ODE; boundedness of solution; linear perturbation
UR - http://eudml.org/doc/37771
ER -

References

top
  1. Bellman, R., 10.1215/S0012-7094-44-01146-4, Duke Math. J. 11 (1944), 513–516. (1944) Zbl0061.18503MR0010761DOI10.1215/S0012-7094-44-01146-4
  2. Bellman, R., Stability Theory of Differential Equations, McGraw-Hill Book Company, New York, 1953. (1953) Zbl0053.24705MR0061235
  3. Cesari, L., Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, 2nd ed., Springer-Verlag, Berlin, 1963. (1963) Zbl0111.08701
  4. Galbraith, A., McShane, E. J., Parrish, G., 10.1073/pnas.53.2.247, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 247–249. (1965) MR0174817DOI10.1073/pnas.53.2.247
  5. Knowles, I., 10.1016/0022-0396(79)90003-2, J. Differential Equations 34 (1979), 179–203. (1979) Zbl0388.34029MR0550039DOI10.1016/0022-0396(79)90003-2
  6. Manfrin, R., 10.4171/PM/1821, Portugal. Math. 65 (2008), 447–484. (2008) Zbl1160.35477MR2483347DOI10.4171/PM/1821
  7. Manfrin, R., 10.1619/fesi.52.255, Funkcial. Ekvac. 52 (2009), 255–279. (2009) Zbl1175.34044MR2547105DOI10.1619/fesi.52.255
  8. Manfrin, R., On the boundedness of solutions of the equation u ' ' + ( 1 + f ( t ) ) u = 0 , Discrete Contin. Dynam. Systems 23 (2009), 991–1008. (2009) Zbl1190.34037MR2461836
  9. Opial, Z., Nouvelles remarques sur l’équation différentielle u ' ' + a ( t ) u = 0 , Ann. Polon. Math. 6 (1959), 75–81. (1959) Zbl0085.07003MR0104864
  10. Trench, W. F., 10.1090/S0002-9939-1963-0142844-7, Proc. Amer. Math. Soc. 14 (1963), 12–14. (1963) MR0142844DOI10.1090/S0002-9939-1963-0142844-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.