Smoothing and preservation of irregularities using local linear fitting

Irène Gijbels

Applications of Mathematics (2008)

  • Volume: 53, Issue: 3, page 177-194
  • ISSN: 0862-7940

Abstract

top
For nonparametric estimation of a smooth regression function, local linear fitting is a widely-used method. The goal of this paper is to briefly review how to use this method when the unknown curve possibly has some irregularities, such as jumps or peaks, at unknown locations. It is then explained how the same basic method can be used when estimating unsmooth probability densities and conditional variance functions.

How to cite

top

Gijbels, Irène. "Smoothing and preservation of irregularities using local linear fitting." Applications of Mathematics 53.3 (2008): 177-194. <http://eudml.org/doc/37777>.

@article{Gijbels2008,
abstract = {For nonparametric estimation of a smooth regression function, local linear fitting is a widely-used method. The goal of this paper is to briefly review how to use this method when the unknown curve possibly has some irregularities, such as jumps or peaks, at unknown locations. It is then explained how the same basic method can be used when estimating unsmooth probability densities and conditional variance functions.},
author = {Gijbels, Irène},
journal = {Applications of Mathematics},
keywords = {density estimation; irregularities; jumps; local linear fitting; mean; peaks; preservation; smoothing; variance; irregularities; jumps},
language = {eng},
number = {3},
pages = {177-194},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Smoothing and preservation of irregularities using local linear fitting},
url = {http://eudml.org/doc/37777},
volume = {53},
year = {2008},
}

TY - JOUR
AU - Gijbels, Irène
TI - Smoothing and preservation of irregularities using local linear fitting
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 3
SP - 177
EP - 194
AB - For nonparametric estimation of a smooth regression function, local linear fitting is a widely-used method. The goal of this paper is to briefly review how to use this method when the unknown curve possibly has some irregularities, such as jumps or peaks, at unknown locations. It is then explained how the same basic method can be used when estimating unsmooth probability densities and conditional variance functions.
LA - eng
KW - density estimation; irregularities; jumps; local linear fitting; mean; peaks; preservation; smoothing; variance; irregularities; jumps
UR - http://eudml.org/doc/37777
ER -

References

top
  1. Anscombe, F. J., 10.1093/biomet/35.3-4.246, Biometrika 35 (1948), 246-254. (1948) Zbl0032.03702MR0028556DOI10.1093/biomet/35.3-4.246
  2. Antoch, J., Grégoire, G., Hušková, M., 10.1016/j.jspi.2006.06.007, J. Stat. Plann. Inference 137 (2007), 753-777. (2007) MR2301714DOI10.1016/j.jspi.2006.06.007
  3. Casas, I., Gijbels, I., Estimation of smooth and non-smooth variance functions, Manuscript (2007). (2007) 
  4. Desmet, L., Gijbels, I., Peak preserving regression using local linear fitting, (2007), Submitted (2007). (2007) 
  5. Fan, J., Gijbels, I., Local Polynomial Modelling and its Applications, Chapman &amp; Hall London (1996). (1996) Zbl0873.62037MR1383587
  6. Fan, J., Yao, Q., 10.1093/biomet/85.3.645, Biometrika 85 (1998), 645-660. (1998) Zbl0918.62065MR1665822DOI10.1093/biomet/85.3.645
  7. Gao, J., Gijbels, I., Bellegem, S. Van, Nonparametric simultaneous testing for structural breaks, J. Econom. Special Issue on Specification Testing 143 (2008), 123-142. (2008) MR2384436
  8. Gasser, T., Sroka, L., Jennen-Steinmetz, C., 10.1093/biomet/73.3.625, Biometrika 73 (1986), 625-633. (1986) Zbl0649.62035MR0897854DOI10.1093/biomet/73.3.625
  9. Gijbels, I., Goderniaux, A.-C., 10.1198/004017004000000130, Technometrics 46 (2004), 76-86. (2004) MR2043389DOI10.1198/004017004000000130
  10. Gijbels, I., Goderniaux, A.-C., 10.1080/10485250310001626088, J. Nonparametric Stat. 16 (2004), 591-611. (2004) Zbl1148.62304MR2073043DOI10.1080/10485250310001626088
  11. Gijbels, I., Lambert, A., Qiu, P., 10.1109/TPAMI.2006.140, IEEE Trans. Pattern Anal. Mach. Intell. 28 (2006), 1075-1087. (2006) DOI10.1109/TPAMI.2006.140
  12. Gijbels, I., Lambert, A., Qiu, P., 10.1007/s10463-006-0045-9, Ann. Inst. Stat. Math. 59 (2007), 235-272. (2007) MR2394168DOI10.1007/s10463-006-0045-9
  13. Grégoire, G., Hamrouni, Z., 10.1006/jmva.2001.2038, J. Multivariate Anal. 83 (2002), 56-83. (2002) Zbl1021.62026MR1934975DOI10.1006/jmva.2001.2038
  14. Hall, P., Kay, J. W., Titterington, D. M., 10.1093/biomet/77.3.521, Biometrika 77 (1990), 521-528. (1990) MR1087842DOI10.1093/biomet/77.3.521
  15. Hall, P., Titterington, D. M., 10.1080/00401706.1992.10484954, Technometrics 34 (1992), 429-440. (1992) MR1190262DOI10.1080/00401706.1992.10484954
  16. Hamrouni, Z., Inférence statistique par lissage linéaire local pour une fonction de régression présentant des discontinuités, Doctoral Dissertation Université de Joseph Fourier Grenoble (1999). (1999) 
  17. Jones, M. C., Foster, P., A simple nonnegative boundary correction method for kernel density estimation, Stat. Sin. 6 (1996), 1005-1013. (1996) Zbl0859.62037MR1422417
  18. Lambert, A., Nonparametric estimation of discontinuous curves and surfaces, PhD. Dissertation Université catholique de Louvain Louvain-la-Neuve (2005). (2005) 
  19. Marron, J. S., Ruppert, D., Transformations to reduce boundary bias in kernel density estimation, J. R. Stat. Soc., Ser. B 56 (1994), 653-671. (1994) Zbl0805.62046MR1293239
  20. McDonald, J. A., Owen, A. B., 10.1080/00401706.1986.10488127, Technometrics 28 (1986), 195-208. (1986) Zbl0626.65010MR0853113DOI10.1080/00401706.1986.10488127
  21. Müller, H.-G., Stadtmüller, U., 10.1016/0378-3758(93)90046-9, J. Stat. Plann. Inference 35 (1993), 213-231. (1993) MR1220417DOI10.1016/0378-3758(93)90046-9
  22. Nadaraya, E. A., On estimating regression, Theory Probab. Appl. 9 (1964), 141-142. (1964) Zbl0136.40902
  23. Parzen, E., 10.1214/aoms/1177704472, Ann. Math. Stat. 33 (1962), 1065-1076. (1962) Zbl0116.11302MR0143282DOI10.1214/aoms/1177704472
  24. Qiu, P., 10.1080/10485250310001595083, J. Nonparametric Stat. 15 (2003), 437-453. (2003) Zbl1054.62047MR2017479DOI10.1080/10485250310001595083
  25. Qiu, P., Image Processing and Jump Regression Analysis, J. Wiley &amp; Sons Hoboken (2005). (2005) Zbl1070.68146MR2111430
  26. Rosenblatt, M., 10.1214/aoms/1177728190, Ann. Inst. Math. Stat. 27 (1956), 832-837. (1956) Zbl0073.14602MR0079873DOI10.1214/aoms/1177728190
  27. Ruppert, D., Wand, M. P., 10.1214/aos/1176325632, Ann. Stat. 22 (1994), 1346-1370. (1994) Zbl0821.62020MR1311979DOI10.1214/aos/1176325632
  28. Ruppert, D., Wand, M. P., Holst, U., Hössjer, O., 10.1080/00401706.1997.10485117, Technometrics 39 (1997), 262-273. (1997) MR1462587DOI10.1080/00401706.1997.10485117
  29. Schuster, E. F., 10.1080/03610928508828965, Commun. Stat., Theory Methods 14 (1985), 1123-1136. (1985) Zbl0585.62070MR0797636DOI10.1080/03610928508828965
  30. Watson, G. S., Smooth regression analysis, Sankhya, Ser. A 26 (1964), 359-372. (1964) Zbl0137.13002MR0185765

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.