Heavy tailed durations of regional rainfall

Harry Pavlopoulos; Jan Picek; Jana Jurečková

Applications of Mathematics (2008)

  • Volume: 53, Issue: 3, page 249-265
  • ISSN: 0862-7940

Abstract

top
Durations of rain events and drought events over a given region provide important information about the water resources of the region. Of particular interest is the shape of upper tails of the probability distributions of such durations. Recent research suggests that the underlying probability distributions of such durations have heavy tails of hyperbolic type, across a wide range of spatial scales from 2 km to 120 km. These findings are based on radar measurements of spatially averaged rain rate (SARR) over a tropical oceanic region. The present work performs a nonparametric inference on the Pareto tail-index of wet and dry durations at each of those spatial scales, based on the same data, and compares it with conclusions based on the classical Hill estimator. The results are compared and discussed.

How to cite

top

Pavlopoulos, Harry, Picek, Jan, and Jurečková, Jana. "Heavy tailed durations of regional rainfall." Applications of Mathematics 53.3 (2008): 249-265. <http://eudml.org/doc/37782>.

@article{Pavlopoulos2008,
abstract = {Durations of rain events and drought events over a given region provide important information about the water resources of the region. Of particular interest is the shape of upper tails of the probability distributions of such durations. Recent research suggests that the underlying probability distributions of such durations have heavy tails of hyperbolic type, across a wide range of spatial scales from 2 km to 120 km. These findings are based on radar measurements of spatially averaged rain rate (SARR) over a tropical oceanic region. The present work performs a nonparametric inference on the Pareto tail-index of wet and dry durations at each of those spatial scales, based on the same data, and compares it with conclusions based on the classical Hill estimator. The results are compared and discussed.},
author = {Pavlopoulos, Harry, Picek, Jan, Jurečková, Jana},
journal = {Applications of Mathematics},
keywords = {wet and dry durations of regional rainfall; quantile multiscaling; heavy tails; Pareto tail-index; semi-parametric statistical inference; wet and dry durations of regional rainfall; quantile multiscaling; heavy tails; Pareto tail-index; semi-parametric statistical inference},
language = {eng},
number = {3},
pages = {249-265},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Heavy tailed durations of regional rainfall},
url = {http://eudml.org/doc/37782},
volume = {53},
year = {2008},
}

TY - JOUR
AU - Pavlopoulos, Harry
AU - Picek, Jan
AU - Jurečková, Jana
TI - Heavy tailed durations of regional rainfall
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 3
SP - 249
EP - 265
AB - Durations of rain events and drought events over a given region provide important information about the water resources of the region. Of particular interest is the shape of upper tails of the probability distributions of such durations. Recent research suggests that the underlying probability distributions of such durations have heavy tails of hyperbolic type, across a wide range of spatial scales from 2 km to 120 km. These findings are based on radar measurements of spatially averaged rain rate (SARR) over a tropical oceanic region. The present work performs a nonparametric inference on the Pareto tail-index of wet and dry durations at each of those spatial scales, based on the same data, and compares it with conclusions based on the classical Hill estimator. The results are compared and discussed.
LA - eng
KW - wet and dry durations of regional rainfall; quantile multiscaling; heavy tails; Pareto tail-index; semi-parametric statistical inference; wet and dry durations of regional rainfall; quantile multiscaling; heavy tails; Pareto tail-index; semi-parametric statistical inference
UR - http://eudml.org/doc/37782
ER -

References

top
  1. Adler, R. J., Feldman, R. E., (eds.), M. S. Taqqu, A Practical Guide to Heavy Tails. Statistical Techniques and Applications, Birkhäuser Boston (1998). (1998) Zbl0901.00010MR1652283
  2. Cheng, S., Pan, J., 10.1111/1467-9469.00131, Scand. J. Stat. 25 (1998), 717-728. (1998) Zbl0932.62062MR1666796DOI10.1111/1467-9469.00131
  3. Cheng, S., Peng, L., 10.2307/3318540, Bernoulli 7 (2001), 751-760. (2001) Zbl0985.62039MR1867084DOI10.2307/3318540
  4. Haan, L. de, Stadtmüller, U., 10.1017/S144678870000046X, J. Austr. Math. Soc., Ser. A 61 (1996), 381-395. (1996) MR1420345DOI10.1017/S144678870000046X
  5. Michele, C. De, Pavlopoulos, H., The variance-scale plot of intermittent time series and the ranges of scales, Preprint of working paper (2007). (2007) 
  6. Doukhan, P., Oppenheim, G., (eds.), M. S. Taqqu, Theory and Applications of Long-Range Dependence, Birkhäuser Boston (2003). (2003) Zbl1005.00017MR1956041
  7. Embrechts, P., Klüppelberg, C., Mikosch, T., Modelling Extremal Events for Insurance and Finance, Springer Berlin (1997). (1997) MR1458613
  8. Foufoula-Georgiou, E., On scaling theories of space-time rainfall: Some recent results and open problems, Stochastic Methods in Hydrology: Rainfall, Landforms and Floods. Advanced Series on Statistical Sciences and Applied Probability, Vol. 7 O. E. Barndorff-Nielsen, V. K. Gupta, V. Perez-Abreu, E. C. Waymire World Scientific Singapore (1998), 129-171. (1998) 
  9. Gritsis, J., On the probability distribution of the duration of dry and wet spells in processes of spatially averaged rain rate, Master thesis Department of Statistics, Athens University of Economics and Business Athens (1997). (1997) 
  10. Gupta, V. K., 10.1016/S0960-0779(03)00048-1, Chaos Solitons Fractals 19 (2004), 357-365. (2004) Zbl1139.86301DOI10.1016/S0960-0779(03)00048-1
  11. Gupta, V. K., Waymire, E. C., 10.1029/JD095iD03p01999, J. Geophys. Res. 95 (1990), 1999-2009. (1990) DOI10.1029/JD095iD03p01999
  12. Gupta, V. K., Waymire, E. C., 10.1175/1520-0450(1993)032<0251:ASAOMR>2.0.CO;2, J. Appl. Meteorology 32 (1993), 251-267. (1993) DOI10.1175/1520-0450(1993)032<0251:ASAOMR>2.0.CO;2
  13. Gupta, V. K., Waymire, E. C., Spatial variability and scale invariance in hydrologic regionalization, In: Scale Dependence and Scale Invariance in Hydrology G. Sposito Cambridge University Press Cambridge (1998), 88-135. (1998) 
  14. Haeusler, E., Segers, J., 10.3150/07-BEJ5175, Bernoulli 13 (2007), 175-194. (2007) Zbl1111.62045MR2307402DOI10.3150/07-BEJ5175
  15. Heath, D., Resnick, S., Samorodnitsky, G., 10.1287/moor.23.1.145, Math. Oper. Res. 23 (1998), 145-165. (1998) Zbl0981.60092MR1606462DOI10.1287/moor.23.1.145
  16. Jurečková, J., 10.1016/S0167-7152(00)00031-6, Stat. Probab. Lett. 49 (2000), 53-61. (2000) MR1789664DOI10.1016/S0167-7152(00)00031-6
  17. Jurečková, J., Statistical tests on tail index of a probability distribution, METRON---International Journal of Statistics LXI (2003), 151-190. (2003) MR2019798
  18. Jurečková, J., Koul, H. L., Picek, J., Testing the tail index in autoregressive models, Annals of the Institute of Statistical Mathematics (to appear). Published online: 10.1007/s10463-007-0155-z. MR2529967
  19. Jurečková, J., Picek, J., 10.1023/A:1013925226836, Extremes 4 (2001), 165-183. (2001) Zbl1008.62045MR1893871DOI10.1023/A:1013925226836
  20. Jurečková, J., Picek, J., Estimates of the tail index based on nonparametric tests, Theory and Applications of Recent Robust Methods. Series: Statistics for Industry and Technology M. Hubert, G. Pison, A. Struyf, S. Van Aelst Birkhäuser Basel (2004), 141-152. (2004) Zbl1088.62063MR2085892
  21. Kedem, B., Chiu, L. S., 10.1029/WR023i010p01816, Water Resources Research 23 (1987), 1816-1818. (1987) DOI10.1029/WR023i010p01816
  22. Kundu, P. K., Bell, T. L., 10.1029/2002WR001802, Water Resources Research 39 (2003), 1328, doi:10.1029/2002WR001802. (2003) DOI10.1029/2002WR001802
  23. Lovejoy, S., Mandelbrot, B. B., Fractal properties of rain and a fractal model, Tellus 37A (1985), 209-232. (1985) 
  24. Lovejoy, S., Schertzer, D., 10.1029/WR021i008p01233, Water Resources Research 21 (1985), 1233-1250. (1985) DOI10.1029/WR021i008p01233
  25. Lovejoy, S., Schertzer, D., Multifractals and rain, New Uncertainty Concepts in Hydrology and Water Resources Z. W. Kunzewicz Cambridge University Press Cambridge (1995). (1995) 
  26. Lowen, S. B., Teich, M. C., 10.1103/PhysRevE.47.992, Phys. Rev. E 47 (1993), 992-1001. (1993) DOI10.1103/PhysRevE.47.992
  27. Lowen, S. B., Teich, M. C., Fractal-Based Point Processes. Wiley Series in Probability and Statistics, John Wiley &amp; Sons Hoboken (2005). (2005) MR2162101
  28. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman San Francisco (1982). (1982) Zbl0504.28001MR0665254
  29. Marsan, D., Lovejoy, S., Schertzer, D., 10.1029/96JD01840, J. Geophys. Res. 101 (D21) (1996), 26333-26346. (1996) DOI10.1029/96JD01840
  30. Over, T., Gupta, V. K., 10.1175/1520-0450(1994)033<1526:SAOMRD>2.0.CO;2, J. Appl. Meteor. 33 (1994), 1526-1542. (1994) DOI10.1175/1520-0450(1994)033<1526:SAOMRD>2.0.CO;2
  31. Over, T., Gupta, V. K., 10.1029/96JD02033, J. Geophys. Res. 101 (1996), 26319-26331. (1996) DOI10.1029/96JD02033
  32. Pavlopoulos, H., Gritsis, J., 10.1023/A:1009616018874, Environ. Ecol. Stat. 6 (1999), 351-380. (1999) DOI10.1023/A:1009616018874
  33. Pavlopoulos, H., Gupta, V. K., On the intermittence of rainfields: A space-time approach, Technical Report No. 143 Department of Statistics, Athens University of Economics Athens (2001). (2001) 
  34. Pavlopoulos, H., Gupta, V. K., 10.1029/2002JD002763, J. Geophys. Res. 108 (D8) (2003), 8387, doi:10.1029/2002JD002763. (2003) DOI10.1029/2002JD002763
  35. Picek, J., Confidence intervals of the tail index, In: Proceedings in Computational Statistics A. Rizzi, M. Vichi Physica Heidelberg (2006), 1301-1308. (2006) MR2347200
  36. Picek, J., Jurečková, J., A class of tests on the tail index using the modified extreme regression quantiles, ROBUST'2000 J. Antoch, G. Dohnal Union of Czech Mathematicians and Physicists Prague (2001), 217-226. (2001) MR1893871
  37. Schmitt, F., Svannistsem, S., Barbosa, A., 10.1029/98JD02071, J. Geophys. Res. 103 (D18) (1998), 181-194. (1998) DOI10.1029/98JD02071
  38. Short, D. A., Kucera, P. A., Ferrier, B. S., Gerlach, J. C., Rutledge, S. A., Thiele, O. W., 10.1175/1520-0477(1997)078<2817:SRRPWT>2.0.CO;2, Bull. Am. Meteor. Soc. 78 (1997), 2817-2836. (1997) DOI10.1175/1520-0477(1997)078<2817:SRRPWT>2.0.CO;2
  39. Taqqu, M. S., Levy, J. B., Using renewal processes to generate long-range dependence and high variability, Dependence in Probability and Statistics E. Eberlein, M. S. Taqqu Birkhäuser (1986), 73-89. (1986) Zbl0601.60085MR0899985
  40. Tessier, Y., Lovejoy, S., Schertzer, D., 10.1175/1520-0450(1993)032<0223:UMTAOF>2.0.CO;2, J. Appl. Meteor. 32 (1993), 223-250. (1993) DOI10.1175/1520-0450(1993)032<0223:UMTAOF>2.0.CO;2
  41. Willinger, W., Taqqu, M. S., Sherman, R., Wilson, D. V., 10.1109/90.554723, IEEE/ACM Transactions on Networking 5 (1997), 71-86. (1997) DOI10.1109/90.554723

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.