Dead cores of singular Dirichlet boundary value problems with φ -Laplacian

Ravi P. Agarwal; Donal O'Regan; Staněk, Svatoslav

Applications of Mathematics (2008)

  • Volume: 53, Issue: 4, page 381-399
  • ISSN: 0862-7940

Abstract

top
The paper discusses the existence of positive solutions, dead core solutions and pseudodead core solutions of the singular Dirichlet problem ( φ ( u ' ) ) ' = λ f ( t , u , u ' ) , u ( 0 ) = u ( T ) = A . Here λ is the positive parameter, A > 0 , f is singular at the value 0 of its first phase variable and may be singular at the value A of its first and at the value 0 of its second phase variable.

How to cite

top

Agarwal, Ravi P., O'Regan, Donal, and Staněk, Svatoslav. "Dead cores of singular Dirichlet boundary value problems with $\phi $-Laplacian." Applications of Mathematics 53.4 (2008): 381-399. <http://eudml.org/doc/37789>.

@article{Agarwal2008,
abstract = {The paper discusses the existence of positive solutions, dead core solutions and pseudodead core solutions of the singular Dirichlet problem $(\phi (u^\{\prime \}))^\{\prime \} = \lambda f(t,u,u^\{\prime \})$, $u(0)=u(T)=A$. Here $\lambda $ is the positive parameter, $A>0$, $f$ is singular at the value $0$ of its first phase variable and may be singular at the value $A$ of its first and at the value $0$ of its second phase variable.},
author = {Agarwal, Ravi P., O'Regan, Donal, Staněk, Svatoslav},
journal = {Applications of Mathematics},
keywords = {singular Dirichlet boundary value problem; dead core; positive solution; dead core solution; pseudodead core solution; existence; $\phi $-Laplacian; singular Dirichlet boundary value problem; dead core; positive solution},
language = {eng},
number = {4},
pages = {381-399},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dead cores of singular Dirichlet boundary value problems with $\phi $-Laplacian},
url = {http://eudml.org/doc/37789},
volume = {53},
year = {2008},
}

TY - JOUR
AU - Agarwal, Ravi P.
AU - O'Regan, Donal
AU - Staněk, Svatoslav
TI - Dead cores of singular Dirichlet boundary value problems with $\phi $-Laplacian
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 4
SP - 381
EP - 399
AB - The paper discusses the existence of positive solutions, dead core solutions and pseudodead core solutions of the singular Dirichlet problem $(\phi (u^{\prime }))^{\prime } = \lambda f(t,u,u^{\prime })$, $u(0)=u(T)=A$. Here $\lambda $ is the positive parameter, $A>0$, $f$ is singular at the value $0$ of its first phase variable and may be singular at the value $A$ of its first and at the value $0$ of its second phase variable.
LA - eng
KW - singular Dirichlet boundary value problem; dead core; positive solution; dead core solution; pseudodead core solution; existence; $\phi $-Laplacian; singular Dirichlet boundary value problem; dead core; positive solution
UR - http://eudml.org/doc/37789
ER -

References

top
  1. Aris, R., The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Clarendon Press Oxford (1975). (1975) Zbl0315.76052
  2. Agarwal, R. P., O'Regan, D., Staněk, S., 10.1155/AAA/2006/96826, Abstr. Appl. Anal. ID 96826 (2006), 1-30. (2006) Zbl1147.34007MR2211656DOI10.1155/AAA/2006/96826
  3. Agarwal, R. P., O'Regan, D., Staněk, S., 10.1016/j.camwa.2006.12.026, Comput. Math. Appl. 54 (2007), 255-266. (2007) MR2337856DOI10.1016/j.camwa.2006.12.026
  4. Baxley, J. V., Gersdorff, G. S., 10.1006/jdeq.1995.1022, J. Differ. Equations 115 (1995), 441-457. (1995) Zbl0815.35019MR1310940DOI10.1006/jdeq.1995.1022
  5. Bobisud, L. E., 10.1016/0022-0396(90)90090-C, J. Differential Equations 85 (1990), 91-104. (1990) Zbl0704.34033MR1052329DOI10.1016/0022-0396(90)90090-C
  6. Bobisud, L. E., 10.1016/0022-247X(90)90396-W, J. Math. Anal. Appl. 147 (1990), 249-262. (1990) Zbl0706.34052MR1044698DOI10.1016/0022-247X(90)90396-W
  7. Bobisud, L. E., O'Regan, D., Royalty, W. D., 10.1080/00036818808839765, Appl. Anal. 28 (1988), 245-256. (1988) Zbl0628.34025MR0960389DOI10.1080/00036818808839765
  8. Polášek, V., Rachůnková, I., Singular Dirichlet problem for ordinary differential equations with φ -Laplacian, Math. Bohem. 130 (2005), 409-425. (2005) Zbl1114.34017MR2182386
  9. Wang, J., Gao, W., Existence of solutions to boundary value problems for a nonlinear second order equation with weak Carathéodory functions, Differ. Equ. Dyn. Syst. 5 (1997), 175-185. (1997) Zbl0891.34022MR1657262

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.