Dead cores of singular Dirichlet boundary value problems with -Laplacian
Ravi P. Agarwal; Donal O'Regan; Staněk, Svatoslav
Applications of Mathematics (2008)
- Volume: 53, Issue: 4, page 381-399
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAgarwal, Ravi P., O'Regan, Donal, and Staněk, Svatoslav. "Dead cores of singular Dirichlet boundary value problems with $\phi $-Laplacian." Applications of Mathematics 53.4 (2008): 381-399. <http://eudml.org/doc/37789>.
@article{Agarwal2008,
abstract = {The paper discusses the existence of positive solutions, dead core solutions and pseudodead core solutions of the singular Dirichlet problem $(\phi (u^\{\prime \}))^\{\prime \} = \lambda f(t,u,u^\{\prime \})$, $u(0)=u(T)=A$. Here $\lambda $ is the positive parameter, $A>0$, $f$ is singular at the value $0$ of its first phase variable and may be singular at the value $A$ of its first and at the value $0$ of its second phase variable.},
author = {Agarwal, Ravi P., O'Regan, Donal, Staněk, Svatoslav},
journal = {Applications of Mathematics},
keywords = {singular Dirichlet boundary value problem; dead core; positive solution; dead core solution; pseudodead core solution; existence; $\phi $-Laplacian; singular Dirichlet boundary value problem; dead core; positive solution},
language = {eng},
number = {4},
pages = {381-399},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dead cores of singular Dirichlet boundary value problems with $\phi $-Laplacian},
url = {http://eudml.org/doc/37789},
volume = {53},
year = {2008},
}
TY - JOUR
AU - Agarwal, Ravi P.
AU - O'Regan, Donal
AU - Staněk, Svatoslav
TI - Dead cores of singular Dirichlet boundary value problems with $\phi $-Laplacian
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 4
SP - 381
EP - 399
AB - The paper discusses the existence of positive solutions, dead core solutions and pseudodead core solutions of the singular Dirichlet problem $(\phi (u^{\prime }))^{\prime } = \lambda f(t,u,u^{\prime })$, $u(0)=u(T)=A$. Here $\lambda $ is the positive parameter, $A>0$, $f$ is singular at the value $0$ of its first phase variable and may be singular at the value $A$ of its first and at the value $0$ of its second phase variable.
LA - eng
KW - singular Dirichlet boundary value problem; dead core; positive solution; dead core solution; pseudodead core solution; existence; $\phi $-Laplacian; singular Dirichlet boundary value problem; dead core; positive solution
UR - http://eudml.org/doc/37789
ER -
References
top- Aris, R., The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Clarendon Press Oxford (1975). (1975) Zbl0315.76052
- Agarwal, R. P., O'Regan, D., Staněk, S., 10.1155/AAA/2006/96826, Abstr. Appl. Anal. ID 96826 (2006), 1-30. (2006) Zbl1147.34007MR2211656DOI10.1155/AAA/2006/96826
- Agarwal, R. P., O'Regan, D., Staněk, S., 10.1016/j.camwa.2006.12.026, Comput. Math. Appl. 54 (2007), 255-266. (2007) MR2337856DOI10.1016/j.camwa.2006.12.026
- Baxley, J. V., Gersdorff, G. S., 10.1006/jdeq.1995.1022, J. Differ. Equations 115 (1995), 441-457. (1995) Zbl0815.35019MR1310940DOI10.1006/jdeq.1995.1022
- Bobisud, L. E., 10.1016/0022-0396(90)90090-C, J. Differential Equations 85 (1990), 91-104. (1990) Zbl0704.34033MR1052329DOI10.1016/0022-0396(90)90090-C
- Bobisud, L. E., 10.1016/0022-247X(90)90396-W, J. Math. Anal. Appl. 147 (1990), 249-262. (1990) Zbl0706.34052MR1044698DOI10.1016/0022-247X(90)90396-W
- Bobisud, L. E., O'Regan, D., Royalty, W. D., 10.1080/00036818808839765, Appl. Anal. 28 (1988), 245-256. (1988) Zbl0628.34025MR0960389DOI10.1080/00036818808839765
- Polášek, V., Rachůnková, I., Singular Dirichlet problem for ordinary differential equations with -Laplacian, Math. Bohem. 130 (2005), 409-425. (2005) Zbl1114.34017MR2182386
- Wang, J., Gao, W., Existence of solutions to boundary value problems for a nonlinear second order equation with weak Carathéodory functions, Differ. Equ. Dyn. Syst. 5 (1997), 175-185. (1997) Zbl0891.34022MR1657262
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.