Singular Dirichlet problem for ordinary differential equations with -Laplacian
Vladimír Polášek; Irena Rachůnková
Mathematica Bohemica (2005)
- Volume: 130, Issue: 4, page 409-425
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topPolášek, Vladimír, and Rachůnková, Irena. "Singular Dirichlet problem for ordinary differential equations with $\phi $-Laplacian." Mathematica Bohemica 130.4 (2005): 409-425. <http://eudml.org/doc/249593>.
@article{Polášek2005,
abstract = {We provide sufficient conditions for solvability of a singular Dirichlet boundary value problem with \[-Laplacian \]
. ((u)) = f(t, u, u), u(0) = A, u(T) = B, . \[ where \]
is an increasing homeomorphism, $(\mathbb \{R\})=\mathbb \{R\}$, $(0)=0$, $f$ satisfies the Carathéodory conditions on each set $[a, b]\times \mathbb \{R\}^\{2\}$ with $[a, b]\subset (0, T)$ and $f$ is not integrable on $[0, T]$ for some fixed values of its phase variables. We prove the existence of a solution which has continuous first derivative on $[0, T]$.},
author = {Polášek, Vladimír, Rachůnková, Irena},
journal = {Mathematica Bohemica},
keywords = {existence of smooth solution; lower function; upper function},
language = {eng},
number = {4},
pages = {409-425},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Singular Dirichlet problem for ordinary differential equations with $\phi $-Laplacian},
url = {http://eudml.org/doc/249593},
volume = {130},
year = {2005},
}
TY - JOUR
AU - Polášek, Vladimír
AU - Rachůnková, Irena
TI - Singular Dirichlet problem for ordinary differential equations with $\phi $-Laplacian
JO - Mathematica Bohemica
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 130
IS - 4
SP - 409
EP - 425
AB - We provide sufficient conditions for solvability of a singular Dirichlet boundary value problem with \[-Laplacian \]
. ((u)) = f(t, u, u), u(0) = A, u(T) = B, . \[ where \]
is an increasing homeomorphism, $(\mathbb {R})=\mathbb {R}$, $(0)=0$, $f$ satisfies the Carathéodory conditions on each set $[a, b]\times \mathbb {R}^{2}$ with $[a, b]\subset (0, T)$ and $f$ is not integrable on $[0, T]$ for some fixed values of its phase variables. We prove the existence of a solution which has continuous first derivative on $[0, T]$.
LA - eng
KW - existence of smooth solution; lower function; upper function
UR - http://eudml.org/doc/249593
ER -
References
top- 10.1016/0022-247X(78)90022-7, J. Math. Anal. Appl. 64 (1978), 96–105. (1978) MR0478973DOI10.1016/0022-247X(78)90022-7
- 10.1137/0138024, SIAM J. Appl. Math. 38 (1980), 275–281. (1980) MR0564014DOI10.1137/0138024
- 10.1017/S030500410005636X, Proc. Camb. Phil. Soc. 86 (1979), 495–510. (1979) MR0542697DOI10.1017/S030500410005636X
- 10.1016/0362-546X(86)90068-4, Nonlinear Anal. 10 (1986), 1303–1325. (1986) MR0866262DOI10.1016/0362-546X(86)90068-4
- 10.1016/S0362-546X(99)00308-9, Nonlinear Anal. 44 (2001), 791–809. (2001) Zbl1042.34526MR1825782DOI10.1016/S0362-546X(99)00308-9
- Some Singular Boundary Value Problems for Ordinary Differential Equations, Izdat. Tbilis. Univ., Tbilisi, 1975. (Russian) (1975) MR0499402
- Some optimal conditions for solvability of two-point singular boundary value problem, Functional Differential Equations 10 (2003), 259–281. (2003) MR2017411
- Singular boundary value problems for second order ordinary differential equations, Itogi Nauki Tekh., Ser. Sovrm. Probl. Mat., Viniti 30 (1987), 105–201. (1987) MR0925830
- Theory of Singular Boundary Value Problems, World Scientific, Singapore, 1995. (1995) MR1286741
- Existence principles and theory for singular Dirichlet boundary value problems, Differential Equations and Dynamical Systems 3 (1995), 289–304. (1995) MR1386750
- 10.1016/S0362-546X(96)00026-0, Nonlinear Anal., Theory Methods Appl. 29 (1997), 221–245. (1997) MR1446226DOI10.1016/S0362-546X(96)00026-0
- 10.1023/A:1022837420342, Czechoslovak Math. J. 48 (1998), 269–289. (1998) MR1624319DOI10.1023/A:1022837420342
- 10.1006/jmaa.1994.1199, J. Math. Anal. Appl. 184 (1994), 263–284. (1994) MR1278388DOI10.1006/jmaa.1994.1199
- 10.1016/S0362-546X(99)00139-X, Nonlinear Anal. 42 (2000), 949–960. (2000) MR1780446DOI10.1016/S0362-546X(99)00139-X
- 10.1016/S0362-546X(01)00148-1, Nonlinear Anal. 52 (2003), 1553–1567. (2003) MR1951507DOI10.1016/S0362-546X(01)00148-1
- Numerical solution of singular nonlinear boundary value problems, Proceedings of the Third International Colloquium in Numerical Analysis. Plovdiv, Bulgaria, August 13–17, 1994, 1995, pp. 15–24. (1995) Zbl0843.65055MR1455945
- Boundary behavior and computation of solutions of singular nonlinear boundary value problems, Communications on Appl. Analysis 4 (2000), 207–226. (2000) MR1752847
- 10.1016/0362-546X(94)90245-3, Nonlinear Anal., Theory Methods Appl. 23 (1994), 669–681. (1994) Zbl0813.34021MR1297285DOI10.1016/0362-546X(94)90245-3
- Existence results for the problem with nonlinear boundary conditions, Nonlinear Anal. 35 (1999), 221–231. (1999) MR1643240
- 10.2748/tmj/1178225520, Tôhoku Math. J. 47 (1995), 327–344. (1995) MR1344906DOI10.2748/tmj/1178225520
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.