Uniqueness of weak solutions of the Navier-Stokes equations

Sadek Gala

Applications of Mathematics (2008)

  • Volume: 53, Issue: 6, page 561-582
  • ISSN: 0862-7940

Abstract

top
Consider the Navier-Stokes equation with the initial data a L σ 2 ( d ) . Let u and v be two weak solutions with the same initial value a . If u satisfies the usual energy inequality and if v L 2 ( ( 0 , T ) ; X ˙ 1 ( d ) d ) where X ˙ 1 ( d ) is the multiplier space, then we have u = v .

How to cite

top

Gala, Sadek. "Uniqueness of weak solutions of the Navier-Stokes equations." Applications of Mathematics 53.6 (2008): 561-582. <http://eudml.org/doc/37801>.

@article{Gala2008,
abstract = {Consider the Navier-Stokes equation with the initial data $a\in L_\{\sigma \}^2( \mathbb \{R\}^d) $. Let $u$ and $v$ be two weak solutions with the same initial value $a$. If $u$ satisfies the usual energy inequality and if $\nabla v\in L^2(( 0,T) ;\dot\{X\} _1(\mathbb \{R\}^d)^d)$ where $\dot\{X\}_1(\mathbb \{R\}^d)$ is the multiplier space, then we have $u=v$.},
author = {Gala, Sadek},
journal = {Applications of Mathematics},
keywords = {Navier-Stokes equations; solution uniqueness; weak Leray-Hopf solution; multiplier space; Navier-Stokes equations; solution uniqueness; weak Leray-Hopf solution; multiplier space},
language = {eng},
number = {6},
pages = {561-582},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uniqueness of weak solutions of the Navier-Stokes equations},
url = {http://eudml.org/doc/37801},
volume = {53},
year = {2008},
}

TY - JOUR
AU - Gala, Sadek
TI - Uniqueness of weak solutions of the Navier-Stokes equations
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 6
SP - 561
EP - 582
AB - Consider the Navier-Stokes equation with the initial data $a\in L_{\sigma }^2( \mathbb {R}^d) $. Let $u$ and $v$ be two weak solutions with the same initial value $a$. If $u$ satisfies the usual energy inequality and if $\nabla v\in L^2(( 0,T) ;\dot{X} _1(\mathbb {R}^d)^d)$ where $\dot{X}_1(\mathbb {R}^d)$ is the multiplier space, then we have $u=v$.
LA - eng
KW - Navier-Stokes equations; solution uniqueness; weak Leray-Hopf solution; multiplier space; Navier-Stokes equations; solution uniqueness; weak Leray-Hopf solution; multiplier space
UR - http://eudml.org/doc/37801
ER -

References

top
  1. Coifman, R., Lions, P. -L., Meyer, Y., Semmes, S., Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286. (1993) Zbl0864.42009MR1225511
  2. Constantin, P., Remarks on the Navier-Stokes equations, In: New Perspectives in Turbulence Springer New York (1991), 229-261. (1991) MR1126937
  3. Foias, C., Une remarque sur l’unicité des solutions des équations de Navier-Stokes en dimension n , Bull. Soc. Math. Fr. 89 (1961), 1-8 French. (1961) Zbl0107.07602MR0141902
  4. Fefferman, C., Stein, E. M., 10.1007/BF02392215, Acta Math. 129 (1972), 137-193. (1972) MR0447953DOI10.1007/BF02392215
  5. Hopf, E., 10.1002/mana.3210040121, Math. Nachr. 4 (1951), German 213-231. (1951) MR0050423DOI10.1002/mana.3210040121
  6. Kato, T., 10.1007/BF01232939, Bol. Soc. Bras. Mat. 22 (1992), 127-155. (1992) MR1179482DOI10.1007/BF01232939
  7. Kozono, H., Sohr, H., 10.1524/anly.1996.16.3.255, Analysis 16 (1996), 255-271. (1996) Zbl0864.35082MR1403221DOI10.1524/anly.1996.16.3.255
  8. Kozono, H., Taniuchi, Y., 10.1007/s002090000130, Math. Z. 235 (2000), 173-194. (2000) Zbl0970.35099MR1785078DOI10.1007/s002090000130
  9. Lemarié-Rieusset, P. G., Recent Developments in the Navier-Stokes Problem, Chapman &amp; Hall/CRC Boca Raton (2002). (2002) Zbl1034.35093MR1938147
  10. Lemarié-Rieusset, P. G., Gala, S., 10.1016/j.jmaa.2005.07.043, J. Math. Anal. Appl. 322 (2006), 1030-1054. (2006) Zbl1109.46039MR2250634DOI10.1016/j.jmaa.2005.07.043
  11. Leray, J., 10.1007/BF02547354, Acta. Math. 63 (1934), 193-248 French. (1934) MR1555394DOI10.1007/BF02547354
  12. Murat, F., Compacité par compensation, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. 5 (1978), 489-507 French. (1978) Zbl0399.46022MR0506997
  13. Masuda, K., 10.2748/tmj/1178228767, Tôhoku Math. J. 36 (1984), 623-646. (1984) Zbl0568.35077MR0767409DOI10.2748/tmj/1178228767
  14. Serrin, J., 10.1007/BF00253344, Arch. Ration. Mech. Anal. 9 (1962), 187-195. (1962) Zbl0106.18302MR0136885DOI10.1007/BF00253344
  15. Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press Princeton (1993). (1993) Zbl0821.42001MR1232192
  16. Stein, E. M., Weiss, G., Introduction to Fourier Analysis on Euclidean spaces. Princeton Mathematical series, Princeton University Press Princeton (1971). (1971) MR0304972
  17. Tartar, L., Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 4, Edinburgh 1979, Res. Notes Math. 39 (1979), 136-212. (1979) MR0584398
  18. Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland Amsterdam (1977). (1977) Zbl0383.35057MR0609732
  19. Taylor, M. E., 10.1080/03605309208820892, Commun. Partial Differ. Equations 17 (1992), 1407-1456. (1992) Zbl0771.35047MR1187618DOI10.1080/03605309208820892

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.