Uniqueness of weak solutions of the Navier-Stokes equations
Applications of Mathematics (2008)
- Volume: 53, Issue: 6, page 561-582
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topGala, Sadek. "Uniqueness of weak solutions of the Navier-Stokes equations." Applications of Mathematics 53.6 (2008): 561-582. <http://eudml.org/doc/37801>.
@article{Gala2008,
abstract = {Consider the Navier-Stokes equation with the initial data $a\in L_\{\sigma \}^2( \mathbb \{R\}^d) $. Let $u$ and $v$ be two weak solutions with the same initial value $a$. If $u$ satisfies the usual energy inequality and if $\nabla v\in L^2(( 0,T) ;\dot\{X\} _1(\mathbb \{R\}^d)^d)$ where $\dot\{X\}_1(\mathbb \{R\}^d)$ is the multiplier space, then we have $u=v$.},
author = {Gala, Sadek},
journal = {Applications of Mathematics},
keywords = {Navier-Stokes equations; solution uniqueness; weak Leray-Hopf solution; multiplier space; Navier-Stokes equations; solution uniqueness; weak Leray-Hopf solution; multiplier space},
language = {eng},
number = {6},
pages = {561-582},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uniqueness of weak solutions of the Navier-Stokes equations},
url = {http://eudml.org/doc/37801},
volume = {53},
year = {2008},
}
TY - JOUR
AU - Gala, Sadek
TI - Uniqueness of weak solutions of the Navier-Stokes equations
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 6
SP - 561
EP - 582
AB - Consider the Navier-Stokes equation with the initial data $a\in L_{\sigma }^2( \mathbb {R}^d) $. Let $u$ and $v$ be two weak solutions with the same initial value $a$. If $u$ satisfies the usual energy inequality and if $\nabla v\in L^2(( 0,T) ;\dot{X} _1(\mathbb {R}^d)^d)$ where $\dot{X}_1(\mathbb {R}^d)$ is the multiplier space, then we have $u=v$.
LA - eng
KW - Navier-Stokes equations; solution uniqueness; weak Leray-Hopf solution; multiplier space; Navier-Stokes equations; solution uniqueness; weak Leray-Hopf solution; multiplier space
UR - http://eudml.org/doc/37801
ER -
References
top- Coifman, R., Lions, P. -L., Meyer, Y., Semmes, S., Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993), 247-286. (1993) Zbl0864.42009MR1225511
- Constantin, P., Remarks on the Navier-Stokes equations, In: New Perspectives in Turbulence Springer New York (1991), 229-261. (1991) MR1126937
- Foias, C., Une remarque sur l’unicité des solutions des équations de Navier-Stokes en dimension , Bull. Soc. Math. Fr. 89 (1961), 1-8 French. (1961) Zbl0107.07602MR0141902
- Fefferman, C., Stein, E. M., 10.1007/BF02392215, Acta Math. 129 (1972), 137-193. (1972) MR0447953DOI10.1007/BF02392215
- Hopf, E., 10.1002/mana.3210040121, Math. Nachr. 4 (1951), German 213-231. (1951) MR0050423DOI10.1002/mana.3210040121
- Kato, T., 10.1007/BF01232939, Bol. Soc. Bras. Mat. 22 (1992), 127-155. (1992) MR1179482DOI10.1007/BF01232939
- Kozono, H., Sohr, H., 10.1524/anly.1996.16.3.255, Analysis 16 (1996), 255-271. (1996) Zbl0864.35082MR1403221DOI10.1524/anly.1996.16.3.255
- Kozono, H., Taniuchi, Y., 10.1007/s002090000130, Math. Z. 235 (2000), 173-194. (2000) Zbl0970.35099MR1785078DOI10.1007/s002090000130
- Lemarié-Rieusset, P. G., Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Boca Raton (2002). (2002) Zbl1034.35093MR1938147
- Lemarié-Rieusset, P. G., Gala, S., 10.1016/j.jmaa.2005.07.043, J. Math. Anal. Appl. 322 (2006), 1030-1054. (2006) Zbl1109.46039MR2250634DOI10.1016/j.jmaa.2005.07.043
- Leray, J., 10.1007/BF02547354, Acta. Math. 63 (1934), 193-248 French. (1934) MR1555394DOI10.1007/BF02547354
- Murat, F., Compacité par compensation, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. 5 (1978), 489-507 French. (1978) Zbl0399.46022MR0506997
- Masuda, K., 10.2748/tmj/1178228767, Tôhoku Math. J. 36 (1984), 623-646. (1984) Zbl0568.35077MR0767409DOI10.2748/tmj/1178228767
- Serrin, J., 10.1007/BF00253344, Arch. Ration. Mech. Anal. 9 (1962), 187-195. (1962) Zbl0106.18302MR0136885DOI10.1007/BF00253344
- Stein, E. M., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press Princeton (1993). (1993) Zbl0821.42001MR1232192
- Stein, E. M., Weiss, G., Introduction to Fourier Analysis on Euclidean spaces. Princeton Mathematical series, Princeton University Press Princeton (1971). (1971) MR0304972
- Tartar, L., Compensated compactness and applications to partial differential equations. Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 4, Edinburgh 1979, Res. Notes Math. 39 (1979), 136-212. (1979) MR0584398
- Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland Amsterdam (1977). (1977) Zbl0383.35057MR0609732
- Taylor, M. E., 10.1080/03605309208820892, Commun. Partial Differ. Equations 17 (1992), 1407-1456. (1992) Zbl0771.35047MR1187618DOI10.1080/03605309208820892
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.