A self-adaptive trust region method for the extended linear complementarity problems
Applications of Mathematics (2009)
- Volume: 54, Issue: 1, page 53-65
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topYu, Zhensheng, and Li, Qiang. "A self-adaptive trust region method for the extended linear complementarity problems." Applications of Mathematics 54.1 (2009): 53-65. <http://eudml.org/doc/37807>.
@article{Yu2009,
abstract = {By using some NCP functions, we reformulate the extended linear complementarity problem as a nonsmooth equation. Then we propose a self-adaptive trust region algorithm for solving this nonsmooth equation. The novelty of this method is that the trust region radius is controlled by the objective function value which can be adjusted automatically according to the algorithm. The global convergence is obtained under mild conditions and the local superlinear convergence rate is also established under strict complementarity conditions.},
author = {Yu, Zhensheng, Li, Qiang},
journal = {Applications of Mathematics},
keywords = {extended linear complementarity; self-adaptive trust region method; global convergence; local superlinear convergence; trust region algorithm; extended linear complementarity; global convergence; local superlinear convergence; trust region algorithm},
language = {eng},
number = {1},
pages = {53-65},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A self-adaptive trust region method for the extended linear complementarity problems},
url = {http://eudml.org/doc/37807},
volume = {54},
year = {2009},
}
TY - JOUR
AU - Yu, Zhensheng
AU - Li, Qiang
TI - A self-adaptive trust region method for the extended linear complementarity problems
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 1
SP - 53
EP - 65
AB - By using some NCP functions, we reformulate the extended linear complementarity problem as a nonsmooth equation. Then we propose a self-adaptive trust region algorithm for solving this nonsmooth equation. The novelty of this method is that the trust region radius is controlled by the objective function value which can be adjusted automatically according to the algorithm. The global convergence is obtained under mild conditions and the local superlinear convergence rate is also established under strict complementarity conditions.
LA - eng
KW - extended linear complementarity; self-adaptive trust region method; global convergence; local superlinear convergence; trust region algorithm; extended linear complementarity; global convergence; local superlinear convergence; trust region algorithm
UR - http://eudml.org/doc/37807
ER -
References
top- Andreani, R., Martínez, J. M., On the solution of the extended linear complementarity problem, Linear Algebra Appl. 281 (1998), 247-257. (1998) MR1645363
- Bonnans, J. F., Gonzaga, C. C., 10.1287/moor.21.1.1, Math. Oper. Res. 21 (1996), 1-25. (1996) Zbl0846.90109MR1385864DOI10.1287/moor.21.1.1
- Clarke, F. H., Optimization and Nonsmooth Analysis, 2nd ed. Classic Appl. Math. 5, SIAM Philadephia (1990). (1990) MR1058436
- Conn, A. R., Gould, N. I. M., Toint, P. H., Trust-Region Methods, SIAM Philadelphia (2000). (2000) Zbl0958.65071MR1774899
- Cottle, R. W., Pang, J.-S., Stone, R. E., The Linear Complementarity Problem, Academic Press Boston (1992). (1992) Zbl0757.90078MR1150683
- Dennis, J. E., Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall Englewood Cliffs (1983). (1983) Zbl0579.65058MR0702023
- Facchinei, F., Soares, J., 10.1137/S1052623494279110, SIAM J. Optim. 7 (1997), 225-247. (1997) Zbl0873.90096MR1430565DOI10.1137/S1052623494279110
- Fan, J. Y., Yuan, Y. X., A new trust region algorithm with trust region radius converging to zero, In: Proceedings of the 5th International Conference on Optimization: Techniques and Applications (Hongkong, December 2001) D. Li Hongkong (2001), 786-794. (2001) MR3522937
- Fischer, A., 10.1080/02331939208843795, Optimization 24 (1992), 269-284. (1992) Zbl0814.65063MR1247636DOI10.1080/02331939208843795
- Fischer, A., An NCP-function and its use for the solution of complementarity problems, D.-Z. Du, L. Qi, R. Womersley Recent Advances in Nonsmooth Optimization World Scientific Singapore (1995), 88-105. (1995) Zbl0948.90133MR1459996
- Gowda, M. S., 10.1016/0893-9659(94)00118-V, Appl. Math. Lett. 8 (1995), 97-100. (1995) Zbl0813.65092MR1355159DOI10.1016/0893-9659(94)00118-V
- Gowda, M. S., 10.1007/BF02592330, Math. Program. 72 (1996), 33-50. (1996) Zbl0853.90109MR1385162DOI10.1007/BF02592330
- G'{u}ler, O., 10.1287/moor.20.2.441, Math. Oper. Res. 20 (1995), 441-448. (1995) MR1342954DOI10.1287/moor.20.2.441
- Hei, L., A self-adaptive trust region algorithm, J. Comput. Math. 21 (2003), 229-236. (2003) Zbl1028.65072MR1967988
- Jiang, H., Fukushima, M., Qi, L., Sun, D., 10.1137/S1052623495296541, SIAM J. Optim. 8 (1998), 140-157. (1998) Zbl0911.90324MR1617440DOI10.1137/S1052623495296541
- Kanzow, C., Zupke, M., Inexact trust-region methods for nonlinear complementarity problems, M. Fukushima, L. Qi Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods Kluwer Academic Publishers Norwell (1999), 211-233. (1999) Zbl0927.65083MR1682704
- Kanzow, C., 10.1080/10556780410001683096, Optim. Method Softw. 19 (2004), 507-525. (2004) MR2095350DOI10.1080/10556780410001683096
- Kanzow, C., Pieper, H., 10.1137/S1052623497328781, SIAM J. Optim. 9 (1999), 342-373. (1999) Zbl0986.90065MR1686823DOI10.1137/S1052623497328781
- Mangasarian, O. L., Pang, J. S., 10.1137/S0895479893262734, SIAM J. Matrix Anal. Appl. 16 (1995), 359-368. (1995) Zbl0835.90103MR1321784DOI10.1137/S0895479893262734
- Powell, M. J. D., Convergence properties of a class of minimization algorithms, In: Nonlinear Programming O. L. Mangasarian, R. R. Meyer, S. M. Robinson Academic Press New York (1975), 1-27. (1975) Zbl0321.90045MR0386270
- Qi, H. D., Qi, L., Sun, D. F., 10.1137/S105262340038256X, SIAM J. Optim. 14 (2003), 439-463. (2003) MR2048162DOI10.1137/S105262340038256X
- Qi, L., 10.1287/moor.18.1.227, Math. Oper. Res. 18 (1993), 227-244. (1993) Zbl0776.65037MR1250115DOI10.1287/moor.18.1.227
- Qi, L., Sun, J., 10.1007/BF01581275, Math. Program. 58 (1993), 353-367. (1993) Zbl0780.90090MR1216791DOI10.1007/BF01581275
- Sartenaer, A., 10.1137/S1064827595286955, SIAM J. Sci. Comput. 18 (1997), 1788-1803. (1997) Zbl0891.90151MR1480635DOI10.1137/S1064827595286955
- Sznajder, R., Gowda, M. S., Generalizations of and P-properties; extended vertical and horizontal linear complementarity problems, Linear Algebra Appl. 94 (1997), 449-467. (1997)
- Solodov, M. V., 10.1023/A:1008684732567, Comput. Optim. Appl. 13 (1999), 187-200. (1999) Zbl1040.90550MR1704119DOI10.1023/A:1008684732567
- Ulbrich, M., 10.1137/S1052623499356344, SIAM J. Optim. 11 (2001), 889-917. (2001) MR1855213DOI10.1137/S1052623499356344
- Xiu, N. H., Zhang, J. Z., 10.1016/S0377-0427(00)00550-1, J. Comput. Appl. Math. 129 (2001), 195-208. (2001) Zbl0985.65070MR1823218DOI10.1016/S0377-0427(00)00550-1
- Zhang, J. Z., Xiu, N. H., 10.1007/s101070050023, Math. Program. 88 (2000), 391-410. (2000) MR1783980DOI10.1007/s101070050023
- Zhang, X. S., Zhang, J. L., Liao, L. Z., An adaptive trust region method and its convergence, Sci. China, Ser. A 45 (2002), 620-631. (2002) Zbl1105.90361MR1911178
- Zhang, J. L., Zhang, X. S., 10.1016/j.amc.2005.11.036, Appl. Math. Comput. 178 (2006), 212-228. (2006) Zbl1104.65061MR2248482DOI10.1016/j.amc.2005.11.036
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.