-convergence of nonlinear monotone operators in perforated domains with holes of small size
Applications of Mathematics (2009)
- Volume: 54, Issue: 6, page 465-489
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topWoukeng, Jean Louis. "$\Sigma $-convergence of nonlinear monotone operators in perforated domains with holes of small size." Applications of Mathematics 54.6 (2009): 465-489. <http://eudml.org/doc/37833>.
@article{Woukeng2009,
abstract = {This paper is devoted to the homogenization beyond the periodic setting, of nonlinear monotone operators in a domain in $\mathbb \{R\}^N$ with isolated holes of size $\varepsilon ^2$ ($\varepsilon >0$ a small parameter). The order of the size of the holes is twice that of the oscillations of the coefficients of the operator, so that the problem under consideration is a reiterated homogenization problem in perforated domains. The usual periodic perforation of the domain and the classical periodicity hypothesis on the coefficients of the operator are here replaced by an abstract assumption covering a great variety of behaviors such as the periodicity, the almost periodicity and many more besides. We illustrate this abstract setting by working out a few concrete homogenization problems. Our main tool is the recent theory of homogenization structures.},
author = {Woukeng, Jean Louis},
journal = {Applications of Mathematics},
keywords = {perforated domains; homogenization; reiterated; perforated domains; homogenization; reiterated},
language = {eng},
number = {6},
pages = {465-489},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$\Sigma $-convergence of nonlinear monotone operators in perforated domains with holes of small size},
url = {http://eudml.org/doc/37833},
volume = {54},
year = {2009},
}
TY - JOUR
AU - Woukeng, Jean Louis
TI - $\Sigma $-convergence of nonlinear monotone operators in perforated domains with holes of small size
JO - Applications of Mathematics
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 54
IS - 6
SP - 465
EP - 489
AB - This paper is devoted to the homogenization beyond the periodic setting, of nonlinear monotone operators in a domain in $\mathbb {R}^N$ with isolated holes of size $\varepsilon ^2$ ($\varepsilon >0$ a small parameter). The order of the size of the holes is twice that of the oscillations of the coefficients of the operator, so that the problem under consideration is a reiterated homogenization problem in perforated domains. The usual periodic perforation of the domain and the classical periodicity hypothesis on the coefficients of the operator are here replaced by an abstract assumption covering a great variety of behaviors such as the periodicity, the almost periodicity and many more besides. We illustrate this abstract setting by working out a few concrete homogenization problems. Our main tool is the recent theory of homogenization structures.
LA - eng
KW - perforated domains; homogenization; reiterated; perforated domains; homogenization; reiterated
UR - http://eudml.org/doc/37833
ER -
References
top- Allaire, G., Murat, F., 10.3233/ASY-1993-7201, Asymptotic Anal. 7 (1993), 81-95. (1993) Zbl0823.35014MR1225439DOI10.3233/ASY-1993-7201
- Amaziane, B., Goncharenko, M., Pankratov, L., 10.1007/s00033-006-5070-2, Z. Angew. Math. Phys. 58 (2007), 592-611. (2007) Zbl1124.35006MR2341687DOI10.1007/s00033-006-5070-2
- Besicovitch, A. S., Almost Periodic Functions, Dover Publications New York (1955). (1955) Zbl0065.07102MR0068029
- Bourbaki, N., Éléments de mathématique. Intégration, Chap. 1-4, Hermann Paris (1966), French. (1966)
- Bourbaki, N., Éléments de matématique. Topologie générale, Chap. 1-4, Hermann Paris (1971), French. (1971) MR0358652
- Cardone, G., Donato, P., Gaudiello, A., 10.1016/S0362-546X(97)00486-0, Nonlin. Anal., Theory Methods Appl. 32 (1998), 335-361. (1998) Zbl0988.35060MR1610578DOI10.1016/S0362-546X(97)00486-0
- V. Chiadò Piat, Defranceschi, A., 10.1080/00036819008839922, Appl. Anal. 36 (1990), 65-87. (1990) MR1040879DOI10.1080/00036819008839922
- Cioranescu, D., J. Saint Jean Paulin, 10.1016/0022-247X(79)90211-7, J. Math. Anal. Appl. 71 (1979), 590-607. (1979) Zbl0427.35073MR0548785DOI10.1016/0022-247X(79)90211-7
- Cioranescu, D., Donato, P., An introduction to homogenization, Oxford Lecture Series in Mathematics and its Applications, 17 Oxford University Press Oxford (1999). (1999) Zbl0939.35001MR1765047
- Cioranescu, D., Murat, F., Un terme étrange venu d'ailleurs. Nonlin. partial differential equations and their applications, Coll. de France Semin., Vol. II, Vol. III, Res. Notes Math. (1982), 98-138, 154-178 French. (1982)
- Conca, C., Donato, P., 10.1051/m2an/1988220405611, RAIRO, Modél. Math. Anal. Numér. 22 (1988), 561-607. (1988) Zbl0669.35028MR0974289DOI10.1051/m2an/1988220405611
- Donato, P., Sgambati, L., Homogenization for some nonlinear problems in perforated domains, Rev. Mat. Apl. 15 (1994), 17-38. (1994) Zbl0806.35011MR1289135
- Fournier, J. F. F., Stewart, J., 10.1090/S0273-0979-1985-15350-9, Bull. Am. Math. Soc. 13 (1985), 1-21. (1985) MR0788385DOI10.1090/S0273-0979-1985-15350-9
- Guichardet, A., Analyse harmonique commutative, Dunod Paris (1968), French. (1968) Zbl0159.18601MR0240554
- Huang, C., 10.3233/ASY-1997-153-401, Asymptotic Anal. 15 (1997), 203-227. (1997) Zbl0898.35009MR1487711DOI10.3233/ASY-1997-153-401
- Larsen, R., Banach Algebras. An Introduction, Marcel Dekker New York (1973). (1973) Zbl0264.46042MR0487369
- Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod/Gauthier-Vilars Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Lukkassen, D., Nguetseng, G., Nnang, H., Wall, P., 10.1155/2009/102486, J. Funct. Spaces Appl. 7 (2009), 121-152. (2009) MR2541229DOI10.1155/2009/102486
- Nguetseng, G., 10.4171/ZAA/1133, Z. Anal. Anwend. 22 (2003), 73-107. (2003) Zbl1045.46031MR1962077DOI10.4171/ZAA/1133
- Nguetseng, G., 10.4171/ZAA/1208, Z. Anal. Anwend. 23 (2004), 483-508. (2004) Zbl1116.46064MR2094594DOI10.4171/ZAA/1208
- Nguetseng, G., Mean value on locally compact abelian groups, Acta Sci. Math. 69 (2003), 203-221. (2003) Zbl1047.43003MR1991666
- Nguetseng, G., Almost periodic homogenization: Asymptotic analysis of a second order elliptic equation, Preprint.
- Nguetseng, G., 10.1016/j.jmaa.2003.08.045, J. Math. Anal. Appl. 289 (2004), 608-628. (2004) Zbl1037.35020MR2026928DOI10.1016/j.jmaa.2003.08.045
- Nguetseng, G., Nnang, H., Homogenization of nonlinear monotone operators beyond the periodic setting, Electron. J. Differ. Equ. 2003 (2003). (2003) Zbl1032.35031MR1971022
- Nguetseng, G., Woukeng, J. L., Deterministic homogenization of parabolic monotone operators with time dependent coefficients, Electron. J. Differ. Equ. 2004 (2004). (2004) Zbl1058.35025MR2075421
- Nguetseng, G., Woukeng, J. L., 10.1016/j.na.2005.12.035, Nonlinear Anal., Theory Methods Appl. 66 (2007), 968-1004. (2007) Zbl1116.35011MR2288445DOI10.1016/j.na.2005.12.035
- Oleinik, O. A., Shaposhnikova, T. A., On the biharmonic equation in a domain perforated along manifolds of small dimension, Differ. Uravn. 32 (1996), 335-362. (1996) MR1444937
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.