Directoid groups
Barry J. Gardner; Michael M. Parmenter
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 3, page 669-681
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGardner, Barry J., and Parmenter, Michael M.. "Directoid groups." Czechoslovak Mathematical Journal 58.3 (2008): 669-681. <http://eudml.org/doc/37859>.
@article{Gardner2008,
abstract = {We continue the study of directoid groups, directed abelian groups equipped with an extra binary operation which assigns an upper bound to each ordered pair subject to some natural restrictions. The class of all such structures can to some extent be viewed as an equationally defined substitute for the class of (2-torsion-free) directed abelian groups. We explore the relationship between the two associated categories, and some aspects of ideals of directoid groups.},
author = {Gardner, Barry J., Parmenter, Michael M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {directed abelian group; variety; directed abelian group; variety},
language = {eng},
number = {3},
pages = {669-681},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Directoid groups},
url = {http://eudml.org/doc/37859},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Gardner, Barry J.
AU - Parmenter, Michael M.
TI - Directoid groups
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 3
SP - 669
EP - 681
AB - We continue the study of directoid groups, directed abelian groups equipped with an extra binary operation which assigns an upper bound to each ordered pair subject to some natural restrictions. The class of all such structures can to some extent be viewed as an equationally defined substitute for the class of (2-torsion-free) directed abelian groups. We explore the relationship between the two associated categories, and some aspects of ideals of directoid groups.
LA - eng
KW - directed abelian group; variety; directed abelian group; variety
UR - http://eudml.org/doc/37859
ER -
References
top- Bigard, A., Keimel, K., Wolfenstein, S., Groupes et anneaux réticulés, Berlin etc., Springer (1977). (1977) Zbl0384.06022MR0552653
- Fuchs, L., Absolutes in partially ordered groups, Kon. Nederl. Akad. Wetensch. Proc. Amsterdam 52 (1949), 251-255. (1949) Zbl0033.10002MR0030526
- Fuchs, L., Partially ordered algebraic systems, Oxford-London-New York-Paris, Pergamon Press (1963). (1963) Zbl0137.02001MR0171864
- Gardner, B. J., Parmenter, M. M., 10.1007/BF01190937, Algebra Univ. 33 (1995), 254-273. (1995) Zbl0832.06005MR1318990DOI10.1007/BF01190937
- Hall, T. E., 10.1017/S000497270000349X, Bull. Austral. Math. Soc. 40 (1989), 59-77. (1989) Zbl0666.20028MR1020841DOI10.1017/S000497270000349X
- Higgins, P. J., Groups with multiple operators, Proc. London Math. Soc. 6 (1956), 366-416. (1956) Zbl0073.01704MR0082492
- Jaffard, P., Un contre-exemple concernant les groupes de divisibilité, C.R. Acad. Sci. Paris 243 (1956), 1264-1266. (1956) MR0086050
- Jakubík, J., On directed groups with additional operations, Math. Bohem. 118 (1993), 11-17. (1993) MR1213828
- Ježek, J., Quackenbush, R., 10.1007/BF01190253, Algebra Univ. 27 (1990), 49-69. (1990) MR1025835DOI10.1007/BF01190253
- Kopytov, V. M., Dimitrov, Z. I., 10.1007/BF00970912, Siberian Math. J. 30 (1989), 895-902. (1989) Zbl0714.06007MR1043436DOI10.1007/BF00970912
- Kurosh, A. G., Lectures on general algebra, New York, Chelsea (1963). (1963) MR0158000
- Leutola, K., Nieminen, J., Posets and generalized lattices, Algebra Univ. 16 (1983), 344-354. (1983) Zbl0514.06003MR0695054
- McAlister, D. B., On multilattice groups, Proc. Cambridge Phil. Soc. 61 (1965), 621-638. (1965) Zbl0135.06203MR0175819
- Nieminen, J., On distributive and modular -lattices, Yokohama Math. J. 31 (1983), 13-20. (1983) Zbl0532.06002MR0734154
- Snášel, V., -lattices, Math. Bohem. 122 (1997), 267-272. (1997) MR1600648
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.