λ -lattices

Václav Snášel

Mathematica Bohemica (1997)

  • Volume: 122, Issue: 3, page 267-272
  • ISSN: 0862-7959

Abstract

top
In this paper, we generalize the notion of supremum and infimum in a poset.

How to cite

top

Snášel, Václav. "$\lambda $-lattices." Mathematica Bohemica 122.3 (1997): 267-272. <http://eudml.org/doc/248125>.

@article{Snášel1997,
abstract = {In this paper, we generalize the notion of supremum and infimum in a poset.},
author = {Snášel, Václav},
journal = {Mathematica Bohemica},
keywords = {ideal; congruence semilattice; $\lambda $-lattices; $\lambda $-posets; -lattices; -posets; ideal; congruence semilattice},
language = {eng},
number = {3},
pages = {267-272},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$\lambda $-lattices},
url = {http://eudml.org/doc/248125},
volume = {122},
year = {1997},
}

TY - JOUR
AU - Snášel, Václav
TI - $\lambda $-lattices
JO - Mathematica Bohemica
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 122
IS - 3
SP - 267
EP - 272
AB - In this paper, we generalize the notion of supremum and infimum in a poset.
LA - eng
KW - ideal; congruence semilattice; $\lambda $-lattices; $\lambda $-posets; -lattices; -posets; ideal; congruence semilattice
UR - http://eudml.org/doc/248125
ER -

References

top
  1. R. N. McKenzie G. F. McNulty W. F. Taylor, Algebгas, Lattices, Varieties, Volume 1, Wadsworth, 1987. (1987) 
  2. G. Grätzer, General Lattice Theory, Birkhäuser, Basel-Stuttgaгt, 1987. (1987) 
  3. K. Leutola J. Nieminen, 10.1007/BF01191789, Algebra Universalis 16 (1983), 344-354. (1983) MR0695054DOI10.1007/BF01191789
  4. J. Nieminen, On distгibutive and modular c-lattices, Yokohama Math. J. 31 (1983), 13-20. (1983) MR0734154

NotesEmbed ?

top

You must be logged in to post comments.