Cayley color graphs of inverse semigroups and groupoids
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 3, page 683-692
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSieben, Nándor. "Cayley color graphs of inverse semigroups and groupoids." Czechoslovak Mathematical Journal 58.3 (2008): 683-692. <http://eudml.org/doc/37860>.
@article{Sieben2008,
abstract = {The notion of Cayley color graphs of groups is generalized to inverse semigroups and groupoids. The set of partial automorphisms of the Cayley color graph of an inverse semigroup or a groupoid is isomorphic to the original inverse semigroup or groupoid. The groupoid of color permuting partial automorphisms of the Cayley color graph of a transitive groupoid is isomorphic to the original groupoid.},
author = {Sieben, Nándor},
journal = {Czechoslovak Mathematical Journal},
keywords = {Cayley color graph; inverse semigroup; groupoid; Cayley color graphs; inverse semigroups; inverse groupoids; partial automorphisms},
language = {eng},
number = {3},
pages = {683-692},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cayley color graphs of inverse semigroups and groupoids},
url = {http://eudml.org/doc/37860},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Sieben, Nándor
TI - Cayley color graphs of inverse semigroups and groupoids
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 3
SP - 683
EP - 692
AB - The notion of Cayley color graphs of groups is generalized to inverse semigroups and groupoids. The set of partial automorphisms of the Cayley color graph of an inverse semigroup or a groupoid is isomorphic to the original inverse semigroup or groupoid. The groupoid of color permuting partial automorphisms of the Cayley color graph of a transitive groupoid is isomorphic to the original groupoid.
LA - eng
KW - Cayley color graph; inverse semigroup; groupoid; Cayley color graphs; inverse semigroups; inverse groupoids; partial automorphisms
UR - http://eudml.org/doc/37860
ER -
References
top- Brown, R., 10.1112/blms/19.2.113, Bull. London Math. Soc. 19 (1987), 113-134. (1987) Zbl0612.20032MR0872125DOI10.1112/blms/19.2.113
- Fiol, M. L., Fiol, M. A., Yebra, J. L. A., When the arc-colored line digraph of a Cayley colored digraph is again a Cayley colored digraph, Ars Combinatoria 34 (1992), 65-73. (1992) Zbl0773.05048MR1206550
- Gross, J. L., Tucker, T. W., Topological graph theory, Wiley Interscience Series in Discrete Mathematics and Optimization (1987). (1987) Zbl0621.05013MR0898434
- Muhly, P. S., CBMS Lecture Notes, Texas Christian University, May (1990). (1990)
- Petrich, M., Inverse semigroups, John Wiley & Sons, New York (1984). (1984) Zbl0546.20053MR0752899
- Renault, J. N., A groupoid approach to -algebras, Lecture Notes in Mathematics, Vol 793, Springer-Verlag, New York (1980). (1980) Zbl0433.46049MR0584266
- White, A. T., Graphs, Groups and Surfaces, North-Holland, Amsterdam (1973). (1973) Zbl0268.05102
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.