Schreier loops

Péter T. Nagy; Karl Strambach

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 3, page 759-786
  • ISSN: 0011-4642

Abstract

top
We study systematically the natural generalization of Schreier's extension theory to obtain proper loops and show that this construction gives a rich family of examples of loops in all traditional common, important loop classes.

How to cite

top

Nagy, Péter T., and Strambach, Karl. "Schreier loops." Czechoslovak Mathematical Journal 58.3 (2008): 759-786. <http://eudml.org/doc/37867>.

@article{Nagy2008,
abstract = {We study systematically the natural generalization of Schreier's extension theory to obtain proper loops and show that this construction gives a rich family of examples of loops in all traditional common, important loop classes.},
author = {Nagy, Péter T., Strambach, Karl},
journal = {Czechoslovak Mathematical Journal},
keywords = {extension of loops; non-associative extension of groups; weak associativity properties of extensions; central extensions; extensions of loops; non-associative extensions of groups; weak associativity properties of extensions; central extensions},
language = {eng},
number = {3},
pages = {759-786},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Schreier loops},
url = {http://eudml.org/doc/37867},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Nagy, Péter T.
AU - Strambach, Karl
TI - Schreier loops
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 3
SP - 759
EP - 786
AB - We study systematically the natural generalization of Schreier's extension theory to obtain proper loops and show that this construction gives a rich family of examples of loops in all traditional common, important loop classes.
LA - eng
KW - extension of loops; non-associative extension of groups; weak associativity properties of extensions; central extensions; extensions of loops; non-associative extensions of groups; weak associativity properties of extensions; central extensions
UR - http://eudml.org/doc/37867
ER -

References

top
  1. Birkenmeier, G., Davis, B., Reeves, K., Xiao, S., 10.1090/S0002-9939-1993-1157998-2, Proc. Amer. Math. Soc. 118 (1993), 689-692. (1993) Zbl0782.20053MR1157998DOI10.1090/S0002-9939-1993-1157998-2
  2. Birkenmeier, G., Xiao, S., 10.1080/00927879508825207, Comm. in Algebra 23 (1995), 81-95. (1995) Zbl0821.20059MR1311775DOI10.1080/00927879508825207
  3. Chein, O., 10.1090/S0002-9947-1974-0330336-3, Trans. Amer. Math. Soc. 188 (1974), 31-51. (1974) Zbl0286.20088MR0330336DOI10.1090/S0002-9947-1974-0330336-3
  4. Chein, O., Moufang loops of small order, Mem. Amer. Math. Soc. 13 (1978), 31-51. (1978) Zbl0378.20053MR0466391
  5. Chein, O., Examples and methods of construction, Chapter II in Quasigroups and Loops: Theory and Applications, O. Chein, H. O. Pflugfelder, J. D. H. Smith 27-93 Heldermann Verlag, Berlin (1990). (1990) MR1125808
  6. Chein, O., Goodaire, E. G., 10.1016/j.jalgebra.2005.01.031, Journal of Algebra 287 (2005), 103-122. (2005) Zbl1084.20042MR2134260DOI10.1016/j.jalgebra.2005.01.031
  7. Csörgő, P., Drápal, A., 10.1007/BF03323028, Results Math. 47 (2005), 242-265. (2005) MR2153496DOI10.1007/BF03323028
  8. Figula, A., 10.1515/form.2005.17.3.431, Forum Math. 17 (2005), 431-460. (2005) Zbl1085.53041MR2138500DOI10.1515/form.2005.17.3.431
  9. Figula, A., 10.1515/advg.2005.5.3.391, Adv. Geom. 5 (2005), 391-420. (2005) Zbl1087.53049MR2154833DOI10.1515/advg.2005.5.3.391
  10. Figula, A., 3 -dimensional Bol loops corresponding to solvable Lie triple systems, Publ. Math. Debrecen 70 (2007), 59-101. (2007) Zbl1174.22001MR2288468
  11. Figula, A., Strambach, K., 10.1007/s10474-006-0529-3, Acta Math. Hungar. 114 (2007), 247-266. (2007) Zbl1123.20061MR2296546DOI10.1007/s10474-006-0529-3
  12. Kinyon, M. K., Kunen, K., The structure of extra loops, Quasigroups Related Systems 12 (2004), 39-60. (2004) Zbl1076.20065MR2130578
  13. Kinyon, M. K., Kunen, K., Phillips, J. D., 10.1007/s00012-002-8205-0, Algebra Universalis 48 (2002), 81-101. (2002) Zbl1058.20057MR1930034DOI10.1007/s00012-002-8205-0
  14. Kinyon, M. K., Phillips, J. D., Vojtěchovský, P., 10.1142/S0219498807001990, J. Algebra Appl. 6 (2007), 1-20. (2007) MR2302693DOI10.1142/S0219498807001990
  15. Kinyon, M. K., Phillips, J. D., Vojtěchovský, P., 10.1090/S0002-9947-07-04391-7, Trans. Amer. Math. Soc. 360 (2008), 2393-2408. (2008) MR2373318DOI10.1090/S0002-9947-07-04391-7
  16. Kurosh, A. G., The Theory of Groups, Vol. 2, transl. from Russian by K. A. Hirsch, Chelsea Publishing Co., New York (1956). (1956) MR0109842
  17. Nagy, G. P., Algebraic commutative Moufang loops, Forum Math. 15 (2003), 37-62. (2003) Zbl1084.20515MR1957278
  18. Nagy, P. T., Strambach, K., Loops in Group Theory and Lie Theory, Expositions in Mathematics 35, Walter de Gruyter, Berlin-New York (2002). (2002) MR1899331
  19. Pflugfelder, H. O., Quasigroups and Loops: An Introduction, Heldermann Verlag, Berlin (1990). (1990) MR1125767
  20. Schreier, O., Über die Erweiterung von Gruppen I, Monatshefte f. Math. 34 (1926), 165-180. (1926) MR1549403
  21. Schreier, O., 10.1007/BF02950735, Abh. Math. Sem. Univ. Hamburg 4 (1926), 321-346. (1926) DOI10.1007/BF02950735
  22. Suvorov, N. M., Krjuckov, N. I., Examples of certain quasigroups and loops that permit only the discrete topologization, Russian Sib. Mat. Zh. 17 (1976), 471-473. (1976) MR0412318
  23. Suvorov, N. M., A commutative IP-loop that admits only discrete topologization, Russian Sib. Mat. Zh. 32 (1991), 193. (1991) MR1155817
  24. Suzuki, M., Group Theory, Vol. 1, Grundlehren der Mathematischen Wissenschaften 10, Springer Verlag, Berlin-New York (1982). (1982) MR0648772
  25. Winterroth, E., Right Bol loops with a finite dimensional group of multiplications, Publ. Math. Debrecen 59 (2001), 161-173. (2001) Zbl1012.22005MR1853499

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.