Quasigroups arisen by right nuclear extension
Commentationes Mathematicae Universitatis Carolinae (2012)
- Volume: 53, Issue: 3, page 391-395
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topNagy, Péter T., and Stuhl, Izabella. "Quasigroups arisen by right nuclear extension." Commentationes Mathematicae Universitatis Carolinae 53.3 (2012): 391-395. <http://eudml.org/doc/246115>.
@article{Nagy2012,
abstract = {The aim of this paper is to prove that a quasigroup $Q$ with right unit is isomorphic to an $f$-extension of a right nuclear normal subgroup $G$ by the factor quasigroup $Q/G$ if and only if there exists a normalized left transversal $\Sigma \subset Q$ to $G$ in $Q$ such that the right translations by elements of $\Sigma $ commute with all right translations by elements of the subgroup $G$. Moreover, a loop $Q$ is isomorphic to an $f$-extension of a right nuclear normal subgroup $G$ by a loop if and only if $G$ is middle-nuclear, and there exists a normalized left transversal to $G$ in $Q$ contained in the commutant of $G$.},
author = {Nagy, Péter T., Stuhl, Izabella},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {extension of quasigroups; right nucleus; quasigroup with right unit; transversal; extensions of quasigroups; nuclei; quasigroups with right unit; transversals; cosets},
language = {eng},
number = {3},
pages = {391-395},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Quasigroups arisen by right nuclear extension},
url = {http://eudml.org/doc/246115},
volume = {53},
year = {2012},
}
TY - JOUR
AU - Nagy, Péter T.
AU - Stuhl, Izabella
TI - Quasigroups arisen by right nuclear extension
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 3
SP - 391
EP - 395
AB - The aim of this paper is to prove that a quasigroup $Q$ with right unit is isomorphic to an $f$-extension of a right nuclear normal subgroup $G$ by the factor quasigroup $Q/G$ if and only if there exists a normalized left transversal $\Sigma \subset Q$ to $G$ in $Q$ such that the right translations by elements of $\Sigma $ commute with all right translations by elements of the subgroup $G$. Moreover, a loop $Q$ is isomorphic to an $f$-extension of a right nuclear normal subgroup $G$ by a loop if and only if $G$ is middle-nuclear, and there exists a normalized left transversal to $G$ in $Q$ contained in the commutant of $G$.
LA - eng
KW - extension of quasigroups; right nucleus; quasigroup with right unit; transversal; extensions of quasigroups; nuclei; quasigroups with right unit; transversals; cosets
UR - http://eudml.org/doc/246115
ER -
References
top- Nagy P.T., Strambach K., 10.1007/s10587-008-0050-7, Czechoslovak Math. J. 58 (133) (2008), 759–786. Zbl1166.20058MR2455937DOI10.1007/s10587-008-0050-7
- Nagy P.T., Stuhl I., 10.1080/00927872.2011.575676, Comm. Alg. 40 (2012), 1893-1900. DOI10.1080/00927872.2011.575676
- Smith J.D.H., Romanowska A.B., Post-modern algebra, Wiley, New York, 1999. Zbl0946.00001MR1673047
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.