Compact images of spaces with a weaker metric topology
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 4, page 921-926
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYan, Peng-fei, and Lü, Cheng. "Compact images of spaces with a weaker metric topology." Czechoslovak Mathematical Journal 58.4 (2008): 921-926. <http://eudml.org/doc/37877>.
@article{Yan2008,
abstract = {If $X$ is a space that can be mapped onto a metric space by a one-to-one mapping, then $X$ is said to have a weaker metric topology. In this paper, we give characterizations of sequence-covering compact images and sequentially-quotient compact images of spaces with a weaker metric topology. The main results are that (1) $Y$ is a sequence-covering compact image of a space with a weaker metric topology if and only if $Y$ has a sequence $\lbrace \mathcal \{F\}_i\rbrace _\{i\in \mathbb \{N\}\}$ of point-finite $cs$-covers such that $ \{\bigcap _\{i\in \mathbb \{N\}\}\}\mathop \{\rm st\} (y,\mathcal \{F\}_i)=\lbrace y\rbrace $ for each $y\in Y$. (2) $Y$ is a sequentially-quotient compact image of a space with a weaker metric topology if and only if $Y$ has a sequence $\lbrace \mathcal \{F\}_i\rbrace _\{i\in \mathbb \{N\}\}$ of point-finite $cs^*$-covers such that $\{\bigcap _\{i\in \mathbb \{N\}\}\}\mathop \{\rm st\} (y,\mathcal \{F\}_i)=\lbrace y\rbrace $ for each $y\in Y$.},
author = {Yan, Peng-fei, Lü, Cheng},
journal = {Czechoslovak Mathematical Journal},
keywords = {sequence-covering mappings; sequentially-quotient mappings; compact mappings; weaker metric topology; sequence-covering mappings; sequentially-quotient mappings; compact mappings; weaker metric topology},
language = {eng},
number = {4},
pages = {921-926},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Compact images of spaces with a weaker metric topology},
url = {http://eudml.org/doc/37877},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Yan, Peng-fei
AU - Lü, Cheng
TI - Compact images of spaces with a weaker metric topology
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 921
EP - 926
AB - If $X$ is a space that can be mapped onto a metric space by a one-to-one mapping, then $X$ is said to have a weaker metric topology. In this paper, we give characterizations of sequence-covering compact images and sequentially-quotient compact images of spaces with a weaker metric topology. The main results are that (1) $Y$ is a sequence-covering compact image of a space with a weaker metric topology if and only if $Y$ has a sequence $\lbrace \mathcal {F}_i\rbrace _{i\in \mathbb {N}}$ of point-finite $cs$-covers such that $ {\bigcap _{i\in \mathbb {N}}}\mathop {\rm st} (y,\mathcal {F}_i)=\lbrace y\rbrace $ for each $y\in Y$. (2) $Y$ is a sequentially-quotient compact image of a space with a weaker metric topology if and only if $Y$ has a sequence $\lbrace \mathcal {F}_i\rbrace _{i\in \mathbb {N}}$ of point-finite $cs^*$-covers such that ${\bigcap _{i\in \mathbb {N}}}\mathop {\rm st} (y,\mathcal {F}_i)=\lbrace y\rbrace $ for each $y\in Y$.
LA - eng
KW - sequence-covering mappings; sequentially-quotient mappings; compact mappings; weaker metric topology; sequence-covering mappings; sequentially-quotient mappings; compact mappings; weaker metric topology
UR - http://eudml.org/doc/37877
ER -
References
top- Arhangel'skii, A. V., 10.1070/RM1966v021n04ABEH004169, Russian Math. Surveys 21 (1966), 115-162. (1966) MR0227950DOI10.1070/RM1966v021n04ABEH004169
- Chaber, J., 10.1016/0166-8641(82)90045-1, Topology Appl. 14 (1982), 31-42. (1982) Zbl0491.54006MR0662810DOI10.1016/0166-8641(82)90045-1
- Engelking, R., General Topology, PWN, Warszawa (1977). (1977) Zbl0373.54002MR0500780
- Foged, L., A characterization of closed images of metric spaces, Proc AMS 95 (1985), 487-490. (1985) Zbl0592.54027MR0806093
- Franklin, S. P., 10.4064/fm-57-1-107-115, Fund. Math. 57 (1965), 107-115. (1965) Zbl0132.17802MR0180954DOI10.4064/fm-57-1-107-115
- Ge, Y., On compact images of locally separable metric spaces, Topology Proc. 27 (2003), 351-360. (2003) Zbl1072.54020MR2048944
- Gruenhage, G., Michael, E., Tanaka, Y., 10.2140/pjm.1984.113.303, Pacific J. Math. 113 (1984), 303-332. (1984) Zbl0561.54016MR0749538DOI10.2140/pjm.1984.113.303
- Liu, C., Tanaka, Y., Spaces with certain compact-countable k-network, and questions, Questions Answers Gen. Topology 14 (1996), 15-37. (1996) MR1384050
- Lin, S., Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press, Beijing (2002). (2002) Zbl1004.54001MR1939779
- Lin, S., A note on sequence-covering mappings, Acta Math Hungar 107 (2005), 193-197. (2005) Zbl1081.54025MR2148582
- Lin, S., Liu, C., 10.1016/S0166-8641(96)00043-0, Topology Appl. 74 (1996), 51-60. (1996) Zbl0869.54036MR1425925DOI10.1016/S0166-8641(96)00043-0
- Lin, S., Yan, P., 10.1016/S0166-8641(99)00163-7, Topology Appl. 109 (2001), 301-314. (2001) Zbl0966.54012MR1807392DOI10.1016/S0166-8641(99)00163-7
- Lin, S., Yan, P., On sequence-covering compact mappings, Acta Math. Sinica 44 (2001), 175-182. (2001) Zbl1005.54031MR1819992
- Tanaka, Y., Symmetric spaces, -developable spaces and -metrizable spaces, Math. Japonica 36 (1991), 71-84. (1991) Zbl0732.54023MR1093356
- Tanaka, Y., Xia, S., Certain -images of locally separable metric spaces, Questions Answers Gen. Topology 14 (1996), 217-231. (1996) Zbl0858.54030MR1403347
- Yan, P., The compact images of metric spaces, J. Math. Study 30 (1997), 185-187. (1997) Zbl0918.54029MR1468151
- Yan, P., On strong sequence-covering compact mapping, Northeastern Math. J. 14 (1998), 341-344. (1998) MR1685267
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.