Rigid extensions of -groups of continuous functions

Michelle L. Knox; Warren Wm. McGovern

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 4, page 993-1014
  • ISSN: 0011-4642

Abstract

top
Let C ( X , ) , C ( X , ) and C ( X ) denote the -groups of integer-valued, rational-valued and real-valued continuous functions on a topological space X , respectively. Characterizations are given for the extensions C ( X , ) C ( X , ) C ( X ) to be rigid, major, and dense.

How to cite

top

Knox, Michelle L., and McGovern, Warren Wm.. "Rigid extensions of $\ell $-groups of continuous functions." Czechoslovak Mathematical Journal 58.4 (2008): 993-1014. <http://eudml.org/doc/37881>.

@article{Knox2008,
abstract = {Let $C(X,\mathbb \{Z\} )$, $C(X,\mathbb \{Q\} )$ and $C(X)$ denote the $\ell $-groups of integer-valued, rational-valued and real-valued continuous functions on a topological space $X$, respectively. Characterizations are given for the extensions $C(X,\mathbb \{Z\} )\le C(X,\mathbb \{Q\} )\le C(X)$ to be rigid, major, and dense.},
author = {Knox, Michelle L., McGovern, Warren Wm.},
journal = {Czechoslovak Mathematical Journal},
keywords = {rigid extension; major extension; archimedean extension; dense extension; rigid extension; major extension; Archimedean extension; dense extension},
language = {eng},
number = {4},
pages = {993-1014},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Rigid extensions of $\ell $-groups of continuous functions},
url = {http://eudml.org/doc/37881},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Knox, Michelle L.
AU - McGovern, Warren Wm.
TI - Rigid extensions of $\ell $-groups of continuous functions
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 993
EP - 1014
AB - Let $C(X,\mathbb {Z} )$, $C(X,\mathbb {Q} )$ and $C(X)$ denote the $\ell $-groups of integer-valued, rational-valued and real-valued continuous functions on a topological space $X$, respectively. Characterizations are given for the extensions $C(X,\mathbb {Z} )\le C(X,\mathbb {Q} )\le C(X)$ to be rigid, major, and dense.
LA - eng
KW - rigid extension; major extension; archimedean extension; dense extension; rigid extension; major extension; Archimedean extension; dense extension
UR - http://eudml.org/doc/37881
ER -

References

top
  1. Aron, E. R., Hager, A. W., Convex vector lattices and -algebras, Top. Its Appl. 12 (1981), 1-10. (1981) MR0600458
  2. Bigard, A., Keimel, K., Wolfenstein, S., Groupes et anneaux rticuls, French Lecture Notes in Mathematics, 608. Springer-Verlag, Berlin-New York (1977). (1977) MR0552653
  3. Conrad, P., McAlister, D., 10.1017/S1446788700005760, J. Austral. Math. Soc. 9 (1969), 182-208. (1969) MR0249340DOI10.1017/S1446788700005760
  4. Darnel, M., Theory of Lattice-Ordered Groups, Monographs and Textbooks in Pure and Applied Mathematics, 187, Marcel Dekker, Inc., New York (1995). (1995) Zbl0810.06016MR1304052
  5. Engelking, R., General Topology, Sigma Series in Pure Mathematics, Vol. 6, Heldermann Verlag, Berlin, (1989). (1989) MR1039321
  6. Hager, A., Kimber, C., McGovern, W. Wm., 10.1007/s10587-005-0031-z, Czech. Math. J. 55 (2005), 409-421. (2005) Zbl1081.06020MR2137147DOI10.1007/s10587-005-0031-z
  7. Hager, A., Martinez, J., 10.1007/s000120050086, Algebra Universalis. 40 (1998), 119-147. (1998) Zbl0936.06015MR1651866DOI10.1007/s000120050086
  8. Henriksen, M., Woods, R. G., Cozero-complemented spaces; when the space of minimal prime ideals of a C ( X ) is compact, Top. Its Applications 141 (2004), 147-170. (2004) Zbl1067.54015MR2058685
  9. Porter, J., Woods, R. G., Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, New York (1988). (1988) Zbl0652.54016MR0918341
  10. Wage, M. L., 10.1073/pnas.75.10.4671, Proc. Natl. Acad. Sci. 75 (1978), 4671-4672. (1978) Zbl0387.54019MR0507930DOI10.1073/pnas.75.10.4671

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.