Rigid extensions of -groups of continuous functions
Michelle L. Knox; Warren Wm. McGovern
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 4, page 993-1014
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKnox, Michelle L., and McGovern, Warren Wm.. "Rigid extensions of $\ell $-groups of continuous functions." Czechoslovak Mathematical Journal 58.4 (2008): 993-1014. <http://eudml.org/doc/37881>.
@article{Knox2008,
abstract = {Let $C(X,\mathbb \{Z\} )$, $C(X,\mathbb \{Q\} )$ and $C(X)$ denote the $\ell $-groups of integer-valued, rational-valued and real-valued continuous functions on a topological space $X$, respectively. Characterizations are given for the extensions $C(X,\mathbb \{Z\} )\le C(X,\mathbb \{Q\} )\le C(X)$ to be rigid, major, and dense.},
author = {Knox, Michelle L., McGovern, Warren Wm.},
journal = {Czechoslovak Mathematical Journal},
keywords = {rigid extension; major extension; archimedean extension; dense extension; rigid extension; major extension; Archimedean extension; dense extension},
language = {eng},
number = {4},
pages = {993-1014},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Rigid extensions of $\ell $-groups of continuous functions},
url = {http://eudml.org/doc/37881},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Knox, Michelle L.
AU - McGovern, Warren Wm.
TI - Rigid extensions of $\ell $-groups of continuous functions
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 993
EP - 1014
AB - Let $C(X,\mathbb {Z} )$, $C(X,\mathbb {Q} )$ and $C(X)$ denote the $\ell $-groups of integer-valued, rational-valued and real-valued continuous functions on a topological space $X$, respectively. Characterizations are given for the extensions $C(X,\mathbb {Z} )\le C(X,\mathbb {Q} )\le C(X)$ to be rigid, major, and dense.
LA - eng
KW - rigid extension; major extension; archimedean extension; dense extension; rigid extension; major extension; Archimedean extension; dense extension
UR - http://eudml.org/doc/37881
ER -
References
top- Aron, E. R., Hager, A. W., Convex vector lattices and -algebras, Top. Its Appl. 12 (1981), 1-10. (1981) MR0600458
- Bigard, A., Keimel, K., Wolfenstein, S., Groupes et anneaux rticuls, French Lecture Notes in Mathematics, 608. Springer-Verlag, Berlin-New York (1977). (1977) MR0552653
- Conrad, P., McAlister, D., 10.1017/S1446788700005760, J. Austral. Math. Soc. 9 (1969), 182-208. (1969) MR0249340DOI10.1017/S1446788700005760
- Darnel, M., Theory of Lattice-Ordered Groups, Monographs and Textbooks in Pure and Applied Mathematics, 187, Marcel Dekker, Inc., New York (1995). (1995) Zbl0810.06016MR1304052
- Engelking, R., General Topology, Sigma Series in Pure Mathematics, Vol. 6, Heldermann Verlag, Berlin, (1989). (1989) MR1039321
- Hager, A., Kimber, C., McGovern, W. Wm., 10.1007/s10587-005-0031-z, Czech. Math. J. 55 (2005), 409-421. (2005) Zbl1081.06020MR2137147DOI10.1007/s10587-005-0031-z
- Hager, A., Martinez, J., 10.1007/s000120050086, Algebra Universalis. 40 (1998), 119-147. (1998) Zbl0936.06015MR1651866DOI10.1007/s000120050086
- Henriksen, M., Woods, R. G., Cozero-complemented spaces; when the space of minimal prime ideals of a is compact, Top. Its Applications 141 (2004), 147-170. (2004) Zbl1067.54015MR2058685
- Porter, J., Woods, R. G., Extensions and Absolutes of Hausdorff Spaces, Springer-Verlag, New York (1988). (1988) Zbl0652.54016MR0918341
- Wage, M. L., 10.1073/pnas.75.10.4671, Proc. Natl. Acad. Sci. 75 (1978), 4671-4672. (1978) Zbl0387.54019MR0507930DOI10.1073/pnas.75.10.4671
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.