Barbilian's metrization procedure in the plane yields either Riemannian or Lagrange generalized metrics
Wladimir G. Boskoff; Bogdan D. Suceavă
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 4, page 1059-1068
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBoskoff, Wladimir G., and Suceavă, Bogdan D.. "Barbilian's metrization procedure in the plane yields either Riemannian or Lagrange generalized metrics." Czechoslovak Mathematical Journal 58.4 (2008): 1059-1068. <http://eudml.org/doc/37885>.
@article{Boskoff2008,
abstract = {In the present paper we answer two questions raised by Barbilian in 1960. First, we study how far can the hypothesis of Barbilian's metrization procedure can be relaxed. Then, we prove that Barbilian's metrization procedure in the plane generates either Riemannian metrics or Lagrance generalized metrics not reducible to Finslerian or Langrangian metrics.},
author = {Boskoff, Wladimir G., Suceavă, Bogdan D.},
journal = {Czechoslovak Mathematical Journal},
keywords = {\{Riemannian metrics; Finslerian metrics; Lagrangian metrics; Lagrange generalized metrics; Barbilian's metrization procedure; Apollonian metric\}; Riemannian metrics; Finslerian metrics; Lagrangian metrics; Lagrange generalized metrics; Barbilian's metrization procedure; Apollonian metric},
language = {eng},
number = {4},
pages = {1059-1068},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Barbilian's metrization procedure in the plane yields either Riemannian or Lagrange generalized metrics},
url = {http://eudml.org/doc/37885},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Boskoff, Wladimir G.
AU - Suceavă, Bogdan D.
TI - Barbilian's metrization procedure in the plane yields either Riemannian or Lagrange generalized metrics
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 1059
EP - 1068
AB - In the present paper we answer two questions raised by Barbilian in 1960. First, we study how far can the hypothesis of Barbilian's metrization procedure can be relaxed. Then, we prove that Barbilian's metrization procedure in the plane generates either Riemannian metrics or Lagrance generalized metrics not reducible to Finslerian or Langrangian metrics.
LA - eng
KW - {Riemannian metrics; Finslerian metrics; Lagrangian metrics; Lagrange generalized metrics; Barbilian's metrization procedure; Apollonian metric}; Riemannian metrics; Finslerian metrics; Lagrangian metrics; Lagrange generalized metrics; Barbilian's metrization procedure; Apollonian metric
UR - http://eudml.org/doc/37885
ER -
References
top- Anastasiei, M., 10.1090/conm/196/02443, Contemp. Math. 196 (1996), 161-169. (1996) Zbl0857.53016MR1403588DOI10.1090/conm/196/02443
- Barbilian, D., Einordnung von Lobayschewskys Massenbestimmung in einer gewissen allgemeinen Metrik der Jordansche Bereiche, Časopis Mathematiky a Fysiky 64 (1934-35), 182-183 1.0601.02. (1934)
- Barbilian, D., Asupra unui principiu de metrizare, Stud. Cercet. Mat. 10 (1959), 68-116. (1959)
- Barbilian, D., Fundamentele metricilor abstracte ale lui Poincaré şi Carathéodory ca aplicaţie a unui principiu general de metrizare, Stud. Cercet. Mat. 10 (1959), 273-306. (1959) MR0131208
- Barbilian, D., J-metricile naturale finsleriene, Stud. Cercet. Mat. 11 (1960), 7-44. (1960) MR0124869
- Barbilian, D., Radu, N., J-metricile naturale finsleriene şi funcţia de reprezentare a lui Riemann, Stud. Cercet. Mat. 12 (1962), 21-36. (1962) MR0144292
- Beardon, A. F., The Apollonian metric of a domain in , in Quasiconformal mappings and analysis, Springer-Verlag (1998), 91-108. (1998) MR1488447
- Boskoff, W. G., -Riemannian manifolds and Barbilian spaces, Stud. Cercet. Mat. 46 (1994), 317-325. (1994) Zbl0817.53012MR1681684
- Boskoff, W. G., Finslerian and induced Riemannian structures for natural Barbilian spaces, Stud. Cercet. Mat. 47 (1995), 9-16. (1995) Zbl0835.53082MR1682536
- Boskoff, W. G., The connection between Barbilian and Hadamard spaces, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sr. 39 (1996), 105-111. (1996) Zbl0888.53024
- Boskoff, W. G., Hyperbolic geometry and Barbilian spaces, Istituto per la Ricerca di Base, Hardronic Press (1996). (1996) MR1386390
- Boskoff, W. G., A generalized Lagrange space induced by the Barbilian distance, Stud. Cercet. Mat. 50 (1998), 125-129. (1998) Zbl1017.53024MR1839634
- Boskoff, W. G., Horja, P., The characterization of some spectral Barbilian spaces using the Tzitzeica construction, Stud. Cercet. Mat. 46 (1994), 503-514. (1994) Zbl0822.51003MR1680832
- Boskoff, W. G., Suceavă, B. D., 10.1016/j.hm.2006.06.001, Historia Mathematica 34 (2007), 221-224. (2007) MR2320101DOI10.1016/j.hm.2006.06.001
- Boskoff, W. G., Suceavă, B. D., The history of Barbilian metrization procedure and Barbilian spaces, Mem. Secţ. Ştiinţ. Acad. Română Ser. IV 28 (2005), 7-16. (2005) MR2360445
- Boskoff, W. G., Ciucă, M. G., Suceavă, B. D., Distances induced by Barbilian's metrization procedure, Houston J. Math. 33 (2007), 709-717. (2007) Zbl1140.53011MR2335731
- Chern, S. S., Chen, W. H., Lam, K. S., Lectures on Differential Geometry, World Scientific (1999). (1999) Zbl0940.53001MR1735502
- Gehring, F. W., Hag, K., 10.1090/conm/256/04003, Contemp. Math. 256 (2000), 143-163. (2000) Zbl0964.30024MR1759676DOI10.1090/conm/256/04003
- Hästö, P. A., The Appollonian metric: uniformity and quasiconvexity, Ann. Acad. Sci. Fennicae 28 (2003), 385-414. (2003) MR1996444
- Hästö, P. A., 10.1155/S1085337503309042, Abstr. Appl. Anal. (2003), 1141-1158. (2003) MR2041216DOI10.1155/S1085337503309042
- Hästö, P. A., 10.1007/BF03321068, Comput. Methods Funct. Theory 4 (2004), 249-273. (2004) Zbl1073.30036MR2147384DOI10.1007/BF03321068
- Hästö, P. A., 10.4310/CAG.2004.v12.n4.a7, Comm. Anal. Geom. 12 (2004), 927-947. (2004) MR2104081DOI10.4310/CAG.2004.v12.n4.a7
- Hästö, P. A., Lindén, H., 10.1080/02781070410001712702, Complex Var. Theory Appl. 49 (2004), 405-415. (2004) MR2073171DOI10.1080/02781070410001712702
- Ibragimov, Z., On the Apollonian metric of domains in , Complex Var. Theory Appl. 48 (2003), 837-855. (2003) MR2014392
- Ibragimov, Z., 10.1007/BF03321045, Comput. Methods Funct. Theory 3 (2003), 397-411. (2003) Zbl1055.30039MR2082025DOI10.1007/BF03321045
- Kelly, P. J., 10.2307/2307467, Amer. Math. Monthly 61 (1954), 311-319. (1954) Zbl0055.41002MR0061397DOI10.2307/2307467
- Miron, R., Anastasiei, M., Bucătaru, I., The Geometry of Lagrange Spaces Handbook of Finsler geometry, Kluwer Acad. Publ., Dordrecht (2003), 969-1122. (2003) MR2066452
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.