The -Neumann operator and commutators of the Bergman projection and multiplication operators
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 4, page 1247-1256
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHaslinger, Friedrich. "The $\bar{\partial }$-Neumann operator and commutators of the Bergman projection and multiplication operators." Czechoslovak Mathematical Journal 58.4 (2008): 1247-1256. <http://eudml.org/doc/37901>.
@article{Haslinger2008,
abstract = {We prove that compactness of the canonical solution operator to $\bar\{\partial \}$ restricted to $(0,1)$-forms with holomorphic coefficients is equivalent to compactness of the commutator $[\mathcal \{P\},\bar\{M\}]$ defined on the whole $L^2_\{(0,1)\}(\Omega ),$ where $\bar\{M\}$ is the multiplication by $\bar\{z\}$ and $\mathcal \{P\} $ is the orthogonal projection of $L^2_\{(0,1)\}(\Omega )$ to the subspace of $(0,1)$ forms with holomorphic coefficients. Further we derive a formula for the $\bar\{\partial \}$-Neumann operator restricted to $(0,1)$ forms with holomorphic coefficients expressed by commutators of the Bergman projection and the multiplications operators by $z $ and $\bar\{z\}$.},
author = {Haslinger, Friedrich},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\bar\{\partial \}$-equation; $\bar\{\partial \}$-Neumann operator; compactness; -equation; compactness},
language = {eng},
number = {4},
pages = {1247-1256},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The $\bar\{\partial \}$-Neumann operator and commutators of the Bergman projection and multiplication operators},
url = {http://eudml.org/doc/37901},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Haslinger, Friedrich
TI - The $\bar{\partial }$-Neumann operator and commutators of the Bergman projection and multiplication operators
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 1247
EP - 1256
AB - We prove that compactness of the canonical solution operator to $\bar{\partial }$ restricted to $(0,1)$-forms with holomorphic coefficients is equivalent to compactness of the commutator $[\mathcal {P},\bar{M}]$ defined on the whole $L^2_{(0,1)}(\Omega ),$ where $\bar{M}$ is the multiplication by $\bar{z}$ and $\mathcal {P} $ is the orthogonal projection of $L^2_{(0,1)}(\Omega )$ to the subspace of $(0,1)$ forms with holomorphic coefficients. Further we derive a formula for the $\bar{\partial }$-Neumann operator restricted to $(0,1)$ forms with holomorphic coefficients expressed by commutators of the Bergman projection and the multiplications operators by $z $ and $\bar{z}$.
LA - eng
KW - $\bar{\partial }$-equation; $\bar{\partial }$-Neumann operator; compactness; -equation; compactness
UR - http://eudml.org/doc/37901
ER -
References
top- Boas, H. P., Straube, E. J., Global regularity of the -Neumann problem: a survey of the -Sobolev theory, Several Complex Variables (M. Schneider and Y.-T. Siu, eds.) MSRI Publications, vol. 37, Cambridge University Press (1999), 79-111. (1999) MR1748601
- Catlin, D., Global regularity of the -Neumann problem, Proc. Sympos. Pure Math. 41 39-49; A.M.S. Providence, Rhode Island, 1984. Zbl0578.32031MR0740870
- Catlin, D., D'Angelo, J., 10.4310/MRL.1997.v4.n4.a11, Math. Res. Lett. 4 (1997), 555-567. (1997) Zbl0886.32015MR1470426DOI10.4310/MRL.1997.v4.n4.a11
- Chen, So-Chin, Shaw, Mei-Chi, Partial differential equations in several complex variables, Studies in Advanced Mathematics, Vol. 19, Amer. Math. Soc. (2001). (2001) Zbl0963.32001MR1800297
- D'Angelo, J., 10.2307/2007015, Ann. Math. 115 (1982), 615-637. (1982) Zbl0488.32008MR0657241DOI10.2307/2007015
- Fu, S., Straube, E. J., 10.1006/jfan.1998.3317, J. Funct. Anal. 159 (1998), 629-641. (1998) MR1659575DOI10.1006/jfan.1998.3317
- Fu, S., Straube, E. J., Compactness in the -Neumann problem, Complex Analysis and Geometry (J. McNeal, ed.), Ohio State Math. Res. Inst. Publ. 9 (2001), 141-160. (2001) Zbl1011.32025MR1912737
- Folland, G., Kohn, J., The Neumann problem for the Cauchy-Riemann complex, Annals of Math. Studies 75, Princeton University Press (1972). (1972) Zbl0247.35093MR0461588
- Haslinger, F., 10.1090/S0002-9939-01-05953-6, Proc. Amer. Math. Soc. 129 (2001), 3321-3329. (2001) MR1845009DOI10.1090/S0002-9939-01-05953-6
- Haslinger, F., 10.5802/afst.1018, Ann. Fac. Sci. Toulouse Math. 11 (2002), 57-70. (2002) MR1986383DOI10.5802/afst.1018
- Haslinger, F., 10.1215/kjm/1250281775, J. Math. Kyoto Univ. 46 (2006), 249-257. (2006) MR2284342DOI10.1215/kjm/1250281775
- Haslinger, F., Helffer, B., 10.1016/j.jfa.2006.09.004, J. Funct. Anal. 243 (2007), 679-697. (2007) MR2289700DOI10.1016/j.jfa.2006.09.004
- Haslinger, F., Lamel, B., 10.1016/j.jfa.2008.03.013, J. Funct. Anal. 255 (2008), 13-24. (2008) MR2417807DOI10.1016/j.jfa.2008.03.013
- Henkin, G., Iordan, A., 10.1007/s002080050028, Math. Ann. 307 (1997), 151-168. (1997) MR1427681DOI10.1007/s002080050028
- Kohn, J., 10.1007/BF02395058, Acta Math. 142 (1979), 79-122. (1979) MR0512213DOI10.1007/BF02395058
- Kohn, J., Nirenberg, L., 10.1002/cpa.3160180305, Comm. Pure Appl. Math. 18 (1965), 443-492. (1965) Zbl0125.33302MR0181815DOI10.1002/cpa.3160180305
- Krantz, St., 10.1090/S0002-9939-1988-0954995-2, Proc. Amer. Math. Soc. 103 (1988), 1136-1138. (1988) Zbl0736.35071MR0954995DOI10.1090/S0002-9939-1988-0954995-2
- Ligocka, E., The regularity of the weighted Bergman projections, Seminar on deformations, Proceedings, Lodz-Warsaw, 1982/84, Lecture Notes in Math. , Springer-Verlag, Berlin (1985), 197-203. (1985) Zbl0594.35049MR0825756
- Salinas, N., Sheu, A., Upmeier, H., 10.2307/1971454, Ann. of Math. 130 (1989), 531-565. (1989) Zbl0708.47021MR1025166DOI10.2307/1971454
- Venugopalkrishna, U., 10.1016/0022-1236(72)90007-9, J. Funct. Anal. 9 (1972), 349-373. (1972) MR0315502DOI10.1016/0022-1236(72)90007-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.