The ¯ -Neumann operator and commutators of the Bergman projection and multiplication operators

Friedrich Haslinger

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 4, page 1247-1256
  • ISSN: 0011-4642

Abstract

top
We prove that compactness of the canonical solution operator to ¯ restricted to ( 0 , 1 ) -forms with holomorphic coefficients is equivalent to compactness of the commutator [ 𝒫 , M ¯ ] defined on the whole L ( 0 , 1 ) 2 ( Ω ) , where M ¯ is the multiplication by z ¯ and 𝒫 is the orthogonal projection of L ( 0 , 1 ) 2 ( Ω ) to the subspace of ( 0 , 1 ) forms with holomorphic coefficients. Further we derive a formula for the ¯ -Neumann operator restricted to ( 0 , 1 ) forms with holomorphic coefficients expressed by commutators of the Bergman projection and the multiplications operators by z and z ¯ .

How to cite

top

Haslinger, Friedrich. "The $\bar{\partial }$-Neumann operator and commutators of the Bergman projection and multiplication operators." Czechoslovak Mathematical Journal 58.4 (2008): 1247-1256. <http://eudml.org/doc/37901>.

@article{Haslinger2008,
abstract = {We prove that compactness of the canonical solution operator to $\bar\{\partial \}$ restricted to $(0,1)$-forms with holomorphic coefficients is equivalent to compactness of the commutator $[\mathcal \{P\},\bar\{M\}]$ defined on the whole $L^2_\{(0,1)\}(\Omega ),$ where $\bar\{M\}$ is the multiplication by $\bar\{z\}$ and $\mathcal \{P\} $ is the orthogonal projection of $L^2_\{(0,1)\}(\Omega )$ to the subspace of $(0,1)$ forms with holomorphic coefficients. Further we derive a formula for the $\bar\{\partial \}$-Neumann operator restricted to $(0,1)$ forms with holomorphic coefficients expressed by commutators of the Bergman projection and the multiplications operators by $z $ and $\bar\{z\}$.},
author = {Haslinger, Friedrich},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\bar\{\partial \}$-equation; $\bar\{\partial \}$-Neumann operator; compactness; -equation; compactness},
language = {eng},
number = {4},
pages = {1247-1256},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The $\bar\{\partial \}$-Neumann operator and commutators of the Bergman projection and multiplication operators},
url = {http://eudml.org/doc/37901},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Haslinger, Friedrich
TI - The $\bar{\partial }$-Neumann operator and commutators of the Bergman projection and multiplication operators
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 4
SP - 1247
EP - 1256
AB - We prove that compactness of the canonical solution operator to $\bar{\partial }$ restricted to $(0,1)$-forms with holomorphic coefficients is equivalent to compactness of the commutator $[\mathcal {P},\bar{M}]$ defined on the whole $L^2_{(0,1)}(\Omega ),$ where $\bar{M}$ is the multiplication by $\bar{z}$ and $\mathcal {P} $ is the orthogonal projection of $L^2_{(0,1)}(\Omega )$ to the subspace of $(0,1)$ forms with holomorphic coefficients. Further we derive a formula for the $\bar{\partial }$-Neumann operator restricted to $(0,1)$ forms with holomorphic coefficients expressed by commutators of the Bergman projection and the multiplications operators by $z $ and $\bar{z}$.
LA - eng
KW - $\bar{\partial }$-equation; $\bar{\partial }$-Neumann operator; compactness; -equation; compactness
UR - http://eudml.org/doc/37901
ER -

References

top
  1. Boas, H. P., Straube, E. J., Global regularity of the ¯ -Neumann problem: a survey of the L 2 -Sobolev theory, Several Complex Variables (M. Schneider and Y.-T. Siu, eds.) MSRI Publications, vol. 37, Cambridge University Press (1999), 79-111. (1999) MR1748601
  2. Catlin, D., Global regularity of the ¯ -Neumann problem, Proc. Sympos. Pure Math. 41 39-49; A.M.S. Providence, Rhode Island, 1984. Zbl0578.32031MR0740870
  3. Catlin, D., D'Angelo, J., 10.4310/MRL.1997.v4.n4.a11, Math. Res. Lett. 4 (1997), 555-567. (1997) Zbl0886.32015MR1470426DOI10.4310/MRL.1997.v4.n4.a11
  4. Chen, So-Chin, Shaw, Mei-Chi, Partial differential equations in several complex variables, Studies in Advanced Mathematics, Vol. 19, Amer. Math. Soc. (2001). (2001) Zbl0963.32001MR1800297
  5. D'Angelo, J., 10.2307/2007015, Ann. Math. 115 (1982), 615-637. (1982) Zbl0488.32008MR0657241DOI10.2307/2007015
  6. Fu, S., Straube, E. J., 10.1006/jfan.1998.3317, J. Funct. Anal. 159 (1998), 629-641. (1998) MR1659575DOI10.1006/jfan.1998.3317
  7. Fu, S., Straube, E. J., Compactness in the ¯ -Neumann problem, Complex Analysis and Geometry (J. McNeal, ed.), Ohio State Math. Res. Inst. Publ. 9 (2001), 141-160. (2001) Zbl1011.32025MR1912737
  8. Folland, G., Kohn, J., The Neumann problem for the Cauchy-Riemann complex, Annals of Math. Studies 75, Princeton University Press (1972). (1972) Zbl0247.35093MR0461588
  9. Haslinger, F., 10.1090/S0002-9939-01-05953-6, Proc. Amer. Math. Soc. 129 (2001), 3321-3329. (2001) MR1845009DOI10.1090/S0002-9939-01-05953-6
  10. Haslinger, F., 10.5802/afst.1018, Ann. Fac. Sci. Toulouse Math. 11 (2002), 57-70. (2002) MR1986383DOI10.5802/afst.1018
  11. Haslinger, F., 10.1215/kjm/1250281775, J. Math. Kyoto Univ. 46 (2006), 249-257. (2006) MR2284342DOI10.1215/kjm/1250281775
  12. Haslinger, F., Helffer, B., 10.1016/j.jfa.2006.09.004, J. Funct. Anal. 243 (2007), 679-697. (2007) MR2289700DOI10.1016/j.jfa.2006.09.004
  13. Haslinger, F., Lamel, B., 10.1016/j.jfa.2008.03.013, J. Funct. Anal. 255 (2008), 13-24. (2008) MR2417807DOI10.1016/j.jfa.2008.03.013
  14. Henkin, G., Iordan, A., 10.1007/s002080050028, Math. Ann. 307 (1997), 151-168. (1997) MR1427681DOI10.1007/s002080050028
  15. Kohn, J., 10.1007/BF02395058, Acta Math. 142 (1979), 79-122. (1979) MR0512213DOI10.1007/BF02395058
  16. Kohn, J., Nirenberg, L., 10.1002/cpa.3160180305, Comm. Pure Appl. Math. 18 (1965), 443-492. (1965) Zbl0125.33302MR0181815DOI10.1002/cpa.3160180305
  17. Krantz, St., 10.1090/S0002-9939-1988-0954995-2, Proc. Amer. Math. Soc. 103 (1988), 1136-1138. (1988) Zbl0736.35071MR0954995DOI10.1090/S0002-9939-1988-0954995-2
  18. Ligocka, E., The regularity of the weighted Bergman projections, Seminar on deformations, Proceedings, Lodz-Warsaw, 1982/84, Lecture Notes in Math. , Springer-Verlag, Berlin (1985), 197-203. (1985) Zbl0594.35049MR0825756
  19. Salinas, N., Sheu, A., Upmeier, H., 10.2307/1971454, Ann. of Math. 130 (1989), 531-565. (1989) Zbl0708.47021MR1025166DOI10.2307/1971454
  20. Venugopalkrishna, U., 10.1016/0022-1236(72)90007-9, J. Funct. Anal. 9 (1972), 349-373. (1972) MR0315502DOI10.1016/0022-1236(72)90007-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.