The canonical solution operator to aDOb∂aFOb restricted to spaces of entire functions
Annales de la Faculté des sciences de Toulouse : Mathématiques (2002)
- Volume: 11, Issue: 1, page 57-70
- ISSN: 0240-2963
Access Full Article
topHow to cite
topReferences
top- [1] Axler ( S.). — The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J.53 (1986), 315-332. Zbl0633.47014MR850538
- [2] Arazy ( J.), Fisher ( S.) and Peetre ( J.). — Hankel operators on weighted Bergman spaces, Amer. J. of Math.110 (1988), 989-1054. Zbl0669.47017MR970119
- [3] Elstrodt ( J.). — Maß - und Integrationstheorie, Springer Verlag, Berlin1996. Zbl0861.28001
- [4] Fu ( S.) and Straube ( E.J.). — Compactness of the ∂-Neumann problem on convex domains, J. of Functional Analysis159 (1998), 629-641. Zbl0959.32042MR1659575
- [5] Fu ( S.) and Straube ( E.J.). — Compactness in the ∂-Neumann problem, Complex Analysis and Geometry (J.McNeal, ed.), Ohio State Math. Res. Inst. Publ.9 (2001), 141-160. Zbl1011.32025MR1912737
- [6] Haslinger ( F.). — Weighted spaces of entire functions, Indiana Univ. Math. J.35 (1986), 193-208. Zbl0559.46012MR825636
- [7] Haslinger ( F.). — The canonical solution operator to ∂ restricted to Bergman spaces, Proc. Amer.Math. Soc.129 (2001), 3321-3329. Zbl0977.32019MR1845009
- [8] Hörmander ( L.). — An introduction to complex analysis in several variables, North-Holland Publishing Company, Amsterdam1990 (3rd edition). Zbl0685.32001MR1045639
- [9] Janson ( S.). — Hankel operators between weighted Bergman spaces, Ark. Mat.26 (1988), 205-219. Zbl0676.47013MR1050105
- [10] Krantz ( St.). — Function theory of several complex variables, Wadsworth & Brooks/Cole, 1992 (2nd edition). Zbl0776.32001
- [11] Krantz ( St.). — Compactness of the ∂-Neumann operator, Proc. Amer. Math. Soc.103 (1988), 1136-1138. Zbl0736.35071MR954995
- [12] Meise ( R.) und Vogt ( D.). — Einführung in die Funktionalanalysis, Vieweg Studium62, Vieweg-Verlag1992. Zbl0781.46001MR1195130
- [13] Salinas ( N.), Sheu ( A.) and Upmeier ( H.). — Toeplitz operators on pseudoconvex domains and foliation C* — algebras, Ann. of Math.130 (1989), 531-565. Zbl0708.47021MR1025166
- [14] Wallsten ( R.). — Hankel operators between weighted Bergman spaces in the ball, Ark. Mat.28 (1990), 183-192. Zbl0705.47023MR1049650
- [15] Weidmann ( J.). — Lineare Operatoren in Hilberträumen, B.G. TeubnerStuttgart, Leipzig, Wiesbaden2000. Zbl0972.47002MR1887367
- [16] Zhu ( K.H.). — Hilbert-Schmidt Hankel operators on the Bergman space, Proc. Amer. Math. Soc.109 (1990), 721-730. Zbl0731.47028MR1013987