The canonical solution operator to aDOb∂aFOb restricted to spaces of entire functions

Friedrich Haslinger

Annales de la Faculté des sciences de Toulouse : Mathématiques (2002)

  • Volume: 11, Issue: 1, page 57-70
  • ISSN: 0240-2963

How to cite

top

Haslinger, Friedrich. "The canonical solution operator to aDOb∂aFOb restricted to spaces of entire functions." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.1 (2002): 57-70. <http://eudml.org/doc/73572>.

@article{Haslinger2002,
author = {Haslinger, Friedrich},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {weighted spaces of entire functions; canonical solution operator},
language = {eng},
number = {1},
pages = {57-70},
publisher = {UNIVERSITE PAUL SABATIER},
title = {The canonical solution operator to aDOb∂aFOb restricted to spaces of entire functions},
url = {http://eudml.org/doc/73572},
volume = {11},
year = {2002},
}

TY - JOUR
AU - Haslinger, Friedrich
TI - The canonical solution operator to aDOb∂aFOb restricted to spaces of entire functions
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2002
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 1
SP - 57
EP - 70
LA - eng
KW - weighted spaces of entire functions; canonical solution operator
UR - http://eudml.org/doc/73572
ER -

References

top
  1. [1] Axler ( S.). — The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J.53 (1986), 315-332. Zbl0633.47014MR850538
  2. [2] Arazy ( J.), Fisher ( S.) and Peetre ( J.). — Hankel operators on weighted Bergman spaces, Amer. J. of Math.110 (1988), 989-1054. Zbl0669.47017MR970119
  3. [3] Elstrodt ( J.). — Maß - und Integrationstheorie, Springer Verlag, Berlin1996. Zbl0861.28001
  4. [4] Fu ( S.) and Straube ( E.J.). — Compactness of the ∂-Neumann problem on convex domains, J. of Functional Analysis159 (1998), 629-641. Zbl0959.32042MR1659575
  5. [5] Fu ( S.) and Straube ( E.J.). — Compactness in the ∂-Neumann problem, Complex Analysis and Geometry (J.McNeal, ed.), Ohio State Math. Res. Inst. Publ.9 (2001), 141-160. Zbl1011.32025MR1912737
  6. [6] Haslinger ( F.). — Weighted spaces of entire functions, Indiana Univ. Math. J.35 (1986), 193-208. Zbl0559.46012MR825636
  7. [7] Haslinger ( F.). — The canonical solution operator to ∂ restricted to Bergman spaces, Proc. Amer.Math. Soc.129 (2001), 3321-3329. Zbl0977.32019MR1845009
  8. [8] Hörmander ( L.). — An introduction to complex analysis in several variables, North-Holland Publishing Company, Amsterdam1990 (3rd edition). Zbl0685.32001MR1045639
  9. [9] Janson ( S.). — Hankel operators between weighted Bergman spaces, Ark. Mat.26 (1988), 205-219. Zbl0676.47013MR1050105
  10. [10] Krantz ( St.). — Function theory of several complex variables, Wadsworth & Brooks/Cole, 1992 (2nd edition). Zbl0776.32001
  11. [11] Krantz ( St.). — Compactness of the ∂-Neumann operator, Proc. Amer. Math. Soc.103 (1988), 1136-1138. Zbl0736.35071MR954995
  12. [12] Meise ( R.) und Vogt ( D.). — Einführung in die Funktionalanalysis, Vieweg Studium62, Vieweg-Verlag1992. Zbl0781.46001MR1195130
  13. [13] Salinas ( N.), Sheu ( A.) and Upmeier ( H.). — Toeplitz operators on pseudoconvex domains and foliation C* — algebras, Ann. of Math.130 (1989), 531-565. Zbl0708.47021MR1025166
  14. [14] Wallsten ( R.). — Hankel operators between weighted Bergman spaces in the ball, Ark. Mat.28 (1990), 183-192. Zbl0705.47023MR1049650
  15. [15] Weidmann ( J.). — Lineare Operatoren in Hilberträumen, B.G. TeubnerStuttgart, Leipzig, Wiesbaden2000. Zbl0972.47002MR1887367
  16. [16] Zhu ( K.H.). — Hilbert-Schmidt Hankel operators on the Bergman space, Proc. Amer. Math. Soc.109 (1990), 721-730. Zbl0731.47028MR1013987

NotesEmbed ?

top

You must be logged in to post comments.