The canonical solution operator to aDOb∂aFOb restricted to spaces of entire functions

Friedrich Haslinger

Annales de la Faculté des sciences de Toulouse : Mathématiques (2002)

  • Volume: 11, Issue: 1, page 57-70
  • ISSN: 0240-2963

How to cite

top

Haslinger, Friedrich. "The canonical solution operator to aDOb∂aFOb restricted to spaces of entire functions." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.1 (2002): 57-70. <http://eudml.org/doc/73572>.

@article{Haslinger2002,
author = {Haslinger, Friedrich},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {weighted spaces of entire functions; canonical solution operator},
language = {eng},
number = {1},
pages = {57-70},
publisher = {UNIVERSITE PAUL SABATIER},
title = {The canonical solution operator to aDOb∂aFOb restricted to spaces of entire functions},
url = {http://eudml.org/doc/73572},
volume = {11},
year = {2002},
}

TY - JOUR
AU - Haslinger, Friedrich
TI - The canonical solution operator to aDOb∂aFOb restricted to spaces of entire functions
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 2002
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 1
SP - 57
EP - 70
LA - eng
KW - weighted spaces of entire functions; canonical solution operator
UR - http://eudml.org/doc/73572
ER -

References

top
  1. [1] Axler ( S.). — The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J.53 (1986), 315-332. Zbl0633.47014MR850538
  2. [2] Arazy ( J.), Fisher ( S.) and Peetre ( J.). — Hankel operators on weighted Bergman spaces, Amer. J. of Math.110 (1988), 989-1054. Zbl0669.47017MR970119
  3. [3] Elstrodt ( J.). — Maß - und Integrationstheorie, Springer Verlag, Berlin1996. Zbl0861.28001
  4. [4] Fu ( S.) and Straube ( E.J.). — Compactness of the ∂-Neumann problem on convex domains, J. of Functional Analysis159 (1998), 629-641. Zbl0959.32042MR1659575
  5. [5] Fu ( S.) and Straube ( E.J.). — Compactness in the ∂-Neumann problem, Complex Analysis and Geometry (J.McNeal, ed.), Ohio State Math. Res. Inst. Publ.9 (2001), 141-160. Zbl1011.32025MR1912737
  6. [6] Haslinger ( F.). — Weighted spaces of entire functions, Indiana Univ. Math. J.35 (1986), 193-208. Zbl0559.46012MR825636
  7. [7] Haslinger ( F.). — The canonical solution operator to ∂ restricted to Bergman spaces, Proc. Amer.Math. Soc.129 (2001), 3321-3329. Zbl0977.32019MR1845009
  8. [8] Hörmander ( L.). — An introduction to complex analysis in several variables, North-Holland Publishing Company, Amsterdam1990 (3rd edition). Zbl0685.32001MR1045639
  9. [9] Janson ( S.). — Hankel operators between weighted Bergman spaces, Ark. Mat.26 (1988), 205-219. Zbl0676.47013MR1050105
  10. [10] Krantz ( St.). — Function theory of several complex variables, Wadsworth & Brooks/Cole, 1992 (2nd edition). Zbl0776.32001
  11. [11] Krantz ( St.). — Compactness of the ∂-Neumann operator, Proc. Amer. Math. Soc.103 (1988), 1136-1138. Zbl0736.35071MR954995
  12. [12] Meise ( R.) und Vogt ( D.). — Einführung in die Funktionalanalysis, Vieweg Studium62, Vieweg-Verlag1992. Zbl0781.46001MR1195130
  13. [13] Salinas ( N.), Sheu ( A.) and Upmeier ( H.). — Toeplitz operators on pseudoconvex domains and foliation C* — algebras, Ann. of Math.130 (1989), 531-565. Zbl0708.47021MR1025166
  14. [14] Wallsten ( R.). — Hankel operators between weighted Bergman spaces in the ball, Ark. Mat.28 (1990), 183-192. Zbl0705.47023MR1049650
  15. [15] Weidmann ( J.). — Lineare Operatoren in Hilberträumen, B.G. TeubnerStuttgart, Leipzig, Wiesbaden2000. Zbl0972.47002MR1887367
  16. [16] Zhu ( K.H.). — Hilbert-Schmidt Hankel operators on the Bergman space, Proc. Amer. Math. Soc.109 (1990), 721-730. Zbl0731.47028MR1013987

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.