On super vertex-graceful unicyclic graphs

Sin Min Lee; Elo Leung; Ho Kuen Ng

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 1, page 1-22
  • ISSN: 0011-4642

Abstract

top
A graph G with p vertices and q edges, vertex set V ( G ) and edge set E ( G ) , is said to be super vertex-graceful (in short SVG), if there exists a function pair ( f , f + ) where f is a bijection from V ( G ) onto P , f + is a bijection from E ( G ) onto Q , f + ( ( u , v ) ) = f ( u ) + f ( v ) for any ( u , v ) E ( G ) , Q = { ± 1 , , ± 1 2 q } , if q is even, { 0 , ± 1 , , ± 1 2 ( q - 1 ) } , if q is odd, and P = { ± 1 , , ± 1 2 p } , if p is even, { 0 , ± 1 , , ± 1 2 ( p - 1 ) } , if p is odd. We determine here families of unicyclic graphs that are super vertex-graceful.

How to cite

top

Lee, Sin Min, Leung, Elo, and Ng, Ho Kuen. "On super vertex-graceful unicyclic graphs." Czechoslovak Mathematical Journal 59.1 (2009): 1-22. <http://eudml.org/doc/37904>.

@article{Lee2009,
abstract = {A graph $G$ with $p$ vertices and $q$ edges, vertex set $V(G)$ and edge set $E(G)$, is said to be super vertex-graceful (in short SVG), if there exists a function pair $(f, f^+)$ where $f$ is a bijection from $V(G)$ onto $P$, $f^+$ is a bijection from $E(G)$ onto $Q$, $f^+((u, v)) = f(u) + f(v)$ for any $(u, v) \in E(G)$, \[ Q = \{\left\lbrace \begin\{array\}\{ll\} \lbrace \pm 1,\dots , \pm \frac\{1\}\{2\}q\rbrace ,&\text\{if $q$ is even,\}\\ \lbrace 0, \pm 1, \dots , \pm \frac\{1\}\{2\}(q-1)\rbrace ,&\text\{if $q$ is odd,\} \end\{array\}\right.\} \] and \[ P = \{\left\lbrace \begin\{array\}\{ll\} \lbrace \pm 1,\dots , \pm \frac\{1\}\{2\}p\rbrace ,&\text\{if $p$ is even,\}\\ \lbrace 0, \pm 1, \dots , \pm \frac\{1\}\{2\}(p-1)\rbrace ,&\text\{if $p$ is odd.\} \end\{array\}\right.\} \] We determine here families of unicyclic graphs that are super vertex-graceful.},
author = {Lee, Sin Min, Leung, Elo, Ng, Ho Kuen},
journal = {Czechoslovak Mathematical Journal},
keywords = {graceful; edge-graceful; super edge-graceful; super vertex-graceful; amalgamation; trees; unicyclic graphs; graceful; edge-graceful; super edge-graceful; super vertex-graceful; amalgamation; tree; unicyclic graph},
language = {eng},
number = {1},
pages = {1-22},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On super vertex-graceful unicyclic graphs},
url = {http://eudml.org/doc/37904},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Lee, Sin Min
AU - Leung, Elo
AU - Ng, Ho Kuen
TI - On super vertex-graceful unicyclic graphs
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 1
EP - 22
AB - A graph $G$ with $p$ vertices and $q$ edges, vertex set $V(G)$ and edge set $E(G)$, is said to be super vertex-graceful (in short SVG), if there exists a function pair $(f, f^+)$ where $f$ is a bijection from $V(G)$ onto $P$, $f^+$ is a bijection from $E(G)$ onto $Q$, $f^+((u, v)) = f(u) + f(v)$ for any $(u, v) \in E(G)$, \[ Q = {\left\lbrace \begin{array}{ll} \lbrace \pm 1,\dots , \pm \frac{1}{2}q\rbrace ,&\text{if $q$ is even,}\\ \lbrace 0, \pm 1, \dots , \pm \frac{1}{2}(q-1)\rbrace ,&\text{if $q$ is odd,} \end{array}\right.} \] and \[ P = {\left\lbrace \begin{array}{ll} \lbrace \pm 1,\dots , \pm \frac{1}{2}p\rbrace ,&\text{if $p$ is even,}\\ \lbrace 0, \pm 1, \dots , \pm \frac{1}{2}(p-1)\rbrace ,&\text{if $p$ is odd.} \end{array}\right.} \] We determine here families of unicyclic graphs that are super vertex-graceful.
LA - eng
KW - graceful; edge-graceful; super edge-graceful; super vertex-graceful; amalgamation; trees; unicyclic graphs; graceful; edge-graceful; super edge-graceful; super vertex-graceful; amalgamation; tree; unicyclic graph
UR - http://eudml.org/doc/37904
ER -

References

top
  1. Cabannis, S., Mitchem, J., Low, R., On edge-graceful regular graphs and trees, Ars Combin. 34 (1992), 129-142. (1992) MR1206556
  2. Gallian, J. A., A dynamic survey of graph labeling, Electronic J. Combin. (2001), 6 1-144. (2001) MR1668059
  3. Keene, J., Simoson, A., Balanced strands for asymmetric, edge-graceful spiders, Ars Combin. 42 (1996), 49-64. (1996) Zbl0856.05087MR1386927
  4. Kuan, Q., Lee, S.-M., Mitchem, J., Wang, A. K., On edge-graceful unicyclic graphs, Congress. Numer. 61 (1988), 65-74. (1988) MR0961638
  5. Lee, L. M., Lee, S.-M., Murty, G., On edge-graceful labelings of complete graphs-solutions of Lo's conjecture, Congress. Numer. 62 (1988), 225-233. (1988) MR0961686
  6. Lee, S.-M., A conjecture on edge-graceful trees, Scientia, Ser. A 3 (1989), 45-57. (1989) Zbl0741.05025MR2309605
  7. Lee, S.-M., New directions in the theory of edge-graceful graphs, Proceedings of the 6th Caribbean Conference on Combinatorics & Computing (1991), 216-231. (1991) 
  8. Lee, S.-M., On strongly indexable graphs and super vertex-graceful graphs, manuscript, . 
  9. Lee, S.-M., Leung, E., On super vertex-graceful trees, Congress. Numer. 167 (2004), 3-26. (2004) Zbl1062.05130MR2122017
  10. Lee, S.-M., Ma, P., Valdes, L., Tong, S.-M., On the edge-graceful grids, Congress. Numer. 154 (2002), 61-77. (2002) Zbl1022.05074MR1980029
  11. Lee, S.-M., Seah, E., Edge-graceful labelings of regular complete k -partite graphs, Congress. Numer. 75 (1990), 41-50. (1990) Zbl0727.05051MR1069161
  12. Lee, S.-M., Seah, E., On edge-gracefulness of the composition of step graphs with null graphs, Combinatorics, Algorithms, and Applications in Society for Industrial and Applied Mathematics (1991), 326-330. (1991) Zbl0741.05060MR1132915
  13. Lee, S.-M., Seah, E., On the edge-graceful ( n , k n ) -multigraphs conjecture, J. Comb. Math. and Comb. Computing 9 (1991), 141-147. (1991) Zbl0735.05072MR1111847
  14. Lee, S.-M., Seah, E., Lo, S. P., On edge-graceful 2-regular graphs, J. Comb. Math. and Comb. Computing 12 (1992), 109-117. (1992) 
  15. Lee, S.-M., Seah, E., Tong, S.-M., On the edge-magic and edge-graceful total graphs conjecture, Congress. Numer. 141 (1999), 37-48. (1999) Zbl0970.05036MR1745223
  16. Lee, S.-M., Seah, E., Wang, P. C., On edge-gracefulness of the kth power graphs, Bull. Inst. Math. Academia Sinica 18 (1990), 1-11. (1990) Zbl0699.05048MR1072825
  17. Lo, S. P., On edge-graceful labelings of graphs, Congress. Numer. 50 (1985), 231-241. (1985) Zbl0597.05054MR0833554
  18. Peng, J., Li, W., Edge-gracefulness of C m × C n , Proceedings of the Sixth Conference of Operations Research Society of China Hong Kong: Global-Link Publishing Company, Changsha (2000), 942-948. (2000) 
  19. Mitchem, J., Simoson, A., On edge-graceful and super-edge-graceful graphs, Ars Combin. 37 (1994), 97-111. (1994) Zbl0805.05074MR1282548
  20. Riskin, A., Wilson, S., Edge graceful labellings of disjoint unions of cycles, Bulletin of the Institute of Combinatorics and its Applications 22 (1998), 53-58. (1998) Zbl0894.05047MR1489867
  21. Schaffer, K., Lee, S.-M., Edge-graceful and edge-magic labelings of Cartesian products of graphs, Congress. Numer. 141 (1999), 119-134. (1999) Zbl0968.05067MR1745230
  22. Shiu, W. C., Lee, S.-M., Schaffer, K., Some k -fold edge-graceful labelings of ( p , p - 1 ) -graphs, J. Comb. Math. and Comb. Computing 38 (2001), 81-95. (2001) Zbl0977.05122MR1853007
  23. Wilson, S., Riskin, A., Edge-graceful labellings of odd cycles and their products, Bulletin of the ICA 24 (1998), 57-64. (1998) Zbl0913.05084MR1638978

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.