The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On super vertex-graceful unicyclic graphs”

The eavesdropping number of a graph

Jeffrey L. Stuart (2009)

Czechoslovak Mathematical Journal

Similarity:

Let G be a connected, undirected graph without loops and without multiple edges. For a pair of distinct vertices u and v , a minimum { u , v } -separating set is a smallest set of edges in G whose removal disconnects u and v . The edge connectivity of G , denoted λ ( G ) , is defined to be the minimum cardinality of a minimum { u , v } -separating set as u and v range over all pairs of distinct vertices in G . We introduce and investigate the eavesdropping number, denoted ε ( G ) , which is defined to be the maximum cardinality...

Classifying trees with edge-deleted central appendage number 2

Shubhangi Stalder, Linda Eroh, John Koker, Hosien S. Moghadam, Steven J. Winters (2009)

Mathematica Bohemica

Similarity:

The eccentricity of a vertex v of a connected graph G is the distance from v to a vertex farthest from v in G . The center of G is the subgraph of G induced by the vertices having minimum eccentricity. For a vertex v in a 2-edge-connected graph G , the edge-deleted eccentricity of v is defined to be the maximum eccentricity of v in G - e over all edges e of G . The edge-deleted center of G is the subgraph induced by those vertices of G having minimum edge-deleted eccentricity. The edge-deleted...

Radius-invariant graphs

Vojtech Bálint, Ondrej Vacek (2004)

Mathematica Bohemica

Similarity:

The eccentricity e ( v ) of a vertex v is defined as the distance to a farthest vertex from v . The radius of a graph G is defined as a r ( G ) = min u V ( G ) { e ( u ) } . A graph G is radius-edge-invariant if r ( G - e ) = r ( G ) for every e E ( G ) , radius-vertex-invariant if r ( G - v ) = r ( G ) for every v V ( G ) and radius-adding-invariant if r ( G + e ) = r ( G ) for every e E ( G ¯ ) . Such classes of graphs are studied in this paper.