Clean matrices over commutative rings
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 1, page 145-158
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Huanyin. "Clean matrices over commutative rings." Czechoslovak Mathematical Journal 59.1 (2009): 145-158. <http://eudml.org/doc/37913>.
@article{Chen2009,
abstract = {A matrix $A\in M_n(R)$ is $e$-clean provided there exists an idempotent $E\in M_n(R)$ such that $A-E\in \mathop \{\rm GL\}_n(R)$ and $\det E=e$. We get a general criterion of $e$-cleanness for the matrix $[[a_1,a_2,\cdots ,a_\{n+1\}]]$. Under the $n$-stable range condition, it is shown that $[[a_1,a_2,\cdots ,a_\{n+1\}]]$ is $0$-clean iff $(a_1,a_2,\cdots ,a_\{n+1\})=1$. As an application, we prove that the $0$-cleanness and unit-regularity for such $n\times n$ matrix over a Dedekind domain coincide for all $n\ge 3$. The analogous for $(s,2)$ property is also obtained.},
author = {Chen, Huanyin},
journal = {Czechoslovak Mathematical Journal},
keywords = {matrix; clean element; unit-regularity; matrix; clean element; unit-regularity; idempotent; Dedekind domain},
language = {eng},
number = {1},
pages = {145-158},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Clean matrices over commutative rings},
url = {http://eudml.org/doc/37913},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Chen, Huanyin
TI - Clean matrices over commutative rings
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 145
EP - 158
AB - A matrix $A\in M_n(R)$ is $e$-clean provided there exists an idempotent $E\in M_n(R)$ such that $A-E\in \mathop {\rm GL}_n(R)$ and $\det E=e$. We get a general criterion of $e$-cleanness for the matrix $[[a_1,a_2,\cdots ,a_{n+1}]]$. Under the $n$-stable range condition, it is shown that $[[a_1,a_2,\cdots ,a_{n+1}]]$ is $0$-clean iff $(a_1,a_2,\cdots ,a_{n+1})=1$. As an application, we prove that the $0$-cleanness and unit-regularity for such $n\times n$ matrix over a Dedekind domain coincide for all $n\ge 3$. The analogous for $(s,2)$ property is also obtained.
LA - eng
KW - matrix; clean element; unit-regularity; matrix; clean element; unit-regularity; idempotent; Dedekind domain
UR - http://eudml.org/doc/37913
ER -
References
top- Camillo, V. P., Khurana, D. A., 10.1081/AGB-100002185, Comm. Algebra 29 (2001), 2293-2295. (2001) Zbl0992.16011MR1837978DOI10.1081/AGB-100002185
- Camillo, V. P., Yu, H. P., 10.1080/00927879408825098, Comm. Algebra 22 (1994), 4737-4749. (1994) Zbl0811.16002MR1285703DOI10.1080/00927879408825098
- Chen, H., 10.1023/A:1009927211591, Algebr. Represent. Theory 2 (1999), 201-207. (1999) Zbl0960.16009MR1702275DOI10.1023/A:1009927211591
- Chen, H., 10.1080/00927870500441825, Comm. Algebra 34 (2006), 911-921. (2006) Zbl1095.16005MR2208108DOI10.1080/00927870500441825
- Fisher, J. W., Snider, R. L., 10.1016/0021-8693(76)90103-4, J. Algebra 42 (1976), 363-368. (1976) Zbl0335.16014MR0419510DOI10.1016/0021-8693(76)90103-4
- Henriksen, M., 10.1016/0021-8693(74)90013-1, J. Algebra 31 (1974), 182-193. (1974) Zbl0285.16009MR0349745DOI10.1016/0021-8693(74)90013-1
- Khurana, D., Lam, T. Y., 10.1016/j.jalgebra.2004.04.019, J. Algebra 280 (2004), 683-698. (2004) Zbl1067.16050MR2090058DOI10.1016/j.jalgebra.2004.04.019
- Lam, T. Y., 10.1142/S0219498804000897, J. Algebra Appl. 3 (2004), 301-343. (2004) Zbl1072.16013MR2096452DOI10.1142/S0219498804000897
- Nicholson, W. K., Varadarjan, K., 10.1090/S0002-9939-98-04397-4, Proc. Amer. Math. Soc. 126 (1998), 61-64. (1998) MR1452816DOI10.1090/S0002-9939-98-04397-4
- Nicholson, W. K., Zhou, Y., Clean rings: A survey, Advances in Ring Theory, Proceedings of the 4th China-Japan-Korea International Conference (2004), 181-198. (2004) MR2181857
- Raphael, R., 10.1016/0021-8693(74)90032-5, J. Algebra 28 (1974), 199-205. (1974) Zbl0271.16013MR0342554DOI10.1016/0021-8693(74)90032-5
- Samei, K., 10.1081/AGB-120039625, Comm. Algebra 32 (2004), 3479-3486. (2004) Zbl1068.06020MR2097473DOI10.1081/AGB-120039625
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.