Clean matrices over commutative rings

Huanyin Chen

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 1, page 145-158
  • ISSN: 0011-4642

Abstract

top
A matrix A M n ( R ) is e -clean provided there exists an idempotent E M n ( R ) such that A - E GL n ( R ) and det E = e . We get a general criterion of e -cleanness for the matrix [ [ a 1 , a 2 , , a n + 1 ] ] . Under the n -stable range condition, it is shown that [ [ a 1 , a 2 , , a n + 1 ] ] is 0 -clean iff ( a 1 , a 2 , , a n + 1 ) = 1 . As an application, we prove that the 0 -cleanness and unit-regularity for such n × n matrix over a Dedekind domain coincide for all n 3 . The analogous for ( s , 2 ) property is also obtained.

How to cite

top

Chen, Huanyin. "Clean matrices over commutative rings." Czechoslovak Mathematical Journal 59.1 (2009): 145-158. <http://eudml.org/doc/37913>.

@article{Chen2009,
abstract = {A matrix $A\in M_n(R)$ is $e$-clean provided there exists an idempotent $E\in M_n(R)$ such that $A-E\in \mathop \{\rm GL\}_n(R)$ and $\det E=e$. We get a general criterion of $e$-cleanness for the matrix $[[a_1,a_2,\cdots ,a_\{n+1\}]]$. Under the $n$-stable range condition, it is shown that $[[a_1,a_2,\cdots ,a_\{n+1\}]]$ is $0$-clean iff $(a_1,a_2,\cdots ,a_\{n+1\})=1$. As an application, we prove that the $0$-cleanness and unit-regularity for such $n\times n$ matrix over a Dedekind domain coincide for all $n\ge 3$. The analogous for $(s,2)$ property is also obtained.},
author = {Chen, Huanyin},
journal = {Czechoslovak Mathematical Journal},
keywords = {matrix; clean element; unit-regularity; matrix; clean element; unit-regularity; idempotent; Dedekind domain},
language = {eng},
number = {1},
pages = {145-158},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Clean matrices over commutative rings},
url = {http://eudml.org/doc/37913},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Chen, Huanyin
TI - Clean matrices over commutative rings
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 145
EP - 158
AB - A matrix $A\in M_n(R)$ is $e$-clean provided there exists an idempotent $E\in M_n(R)$ such that $A-E\in \mathop {\rm GL}_n(R)$ and $\det E=e$. We get a general criterion of $e$-cleanness for the matrix $[[a_1,a_2,\cdots ,a_{n+1}]]$. Under the $n$-stable range condition, it is shown that $[[a_1,a_2,\cdots ,a_{n+1}]]$ is $0$-clean iff $(a_1,a_2,\cdots ,a_{n+1})=1$. As an application, we prove that the $0$-cleanness and unit-regularity for such $n\times n$ matrix over a Dedekind domain coincide for all $n\ge 3$. The analogous for $(s,2)$ property is also obtained.
LA - eng
KW - matrix; clean element; unit-regularity; matrix; clean element; unit-regularity; idempotent; Dedekind domain
UR - http://eudml.org/doc/37913
ER -

References

top
  1. Camillo, V. P., Khurana, D. A., 10.1081/AGB-100002185, Comm. Algebra 29 (2001), 2293-2295. (2001) Zbl0992.16011MR1837978DOI10.1081/AGB-100002185
  2. Camillo, V. P., Yu, H. P., 10.1080/00927879408825098, Comm. Algebra 22 (1994), 4737-4749. (1994) Zbl0811.16002MR1285703DOI10.1080/00927879408825098
  3. Chen, H., 10.1023/A:1009927211591, Algebr. Represent. Theory 2 (1999), 201-207. (1999) Zbl0960.16009MR1702275DOI10.1023/A:1009927211591
  4. Chen, H., 10.1080/00927870500441825, Comm. Algebra 34 (2006), 911-921. (2006) Zbl1095.16005MR2208108DOI10.1080/00927870500441825
  5. Fisher, J. W., Snider, R. L., 10.1016/0021-8693(76)90103-4, J. Algebra 42 (1976), 363-368. (1976) Zbl0335.16014MR0419510DOI10.1016/0021-8693(76)90103-4
  6. Henriksen, M., 10.1016/0021-8693(74)90013-1, J. Algebra 31 (1974), 182-193. (1974) Zbl0285.16009MR0349745DOI10.1016/0021-8693(74)90013-1
  7. Khurana, D., Lam, T. Y., 10.1016/j.jalgebra.2004.04.019, J. Algebra 280 (2004), 683-698. (2004) Zbl1067.16050MR2090058DOI10.1016/j.jalgebra.2004.04.019
  8. Lam, T. Y., 10.1142/S0219498804000897, J. Algebra Appl. 3 (2004), 301-343. (2004) Zbl1072.16013MR2096452DOI10.1142/S0219498804000897
  9. Nicholson, W. K., Varadarjan, K., 10.1090/S0002-9939-98-04397-4, Proc. Amer. Math. Soc. 126 (1998), 61-64. (1998) MR1452816DOI10.1090/S0002-9939-98-04397-4
  10. Nicholson, W. K., Zhou, Y., Clean rings: A survey, Advances in Ring Theory, Proceedings of the 4th China-Japan-Korea International Conference (2004), 181-198. (2004) MR2181857
  11. Raphael, R., 10.1016/0021-8693(74)90032-5, J. Algebra 28 (1974), 199-205. (1974) Zbl0271.16013MR0342554DOI10.1016/0021-8693(74)90032-5
  12. Samei, K., 10.1081/AGB-120039625, Comm. Algebra 32 (2004), 3479-3486. (2004) Zbl1068.06020MR2097473DOI10.1081/AGB-120039625

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.