Projectability and weak homogeneity of pseudo effect algebras
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 1, page 183-196
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJakubík, Ján. "Projectability and weak homogeneity of pseudo effect algebras." Czechoslovak Mathematical Journal 59.1 (2009): 183-196. <http://eudml.org/doc/37916>.
@article{Jakubík2009,
abstract = {In this paper we deal with a pseudo effect algebra $\mathcal \{A\}$ possessing a certain interpolation property. According to a result of Dvurečenskij and Vettterlein, $\mathcal \{A\}$ can be represented as an interval of a unital partially ordered group $G$. We prove that $\mathcal \{A\}$ is projectable (strongly projectable) if and only if $G$ is projectable (strongly projectable). An analogous result concerning weak homogeneity of $\mathcal \{A\}$ and of $G$ is shown to be valid.},
author = {Jakubík, Ján},
journal = {Czechoslovak Mathematical Journal},
keywords = {pseudo effect algebra; unital partially ordered group; internal direct factor; polar; projectability; strong projectability; weak homogeneity; pseudo effect algebra; unital partially ordered group; internal direct factor; polar; projectability; strong projectability; weak homogeneity},
language = {eng},
number = {1},
pages = {183-196},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Projectability and weak homogeneity of pseudo effect algebras},
url = {http://eudml.org/doc/37916},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Jakubík, Ján
TI - Projectability and weak homogeneity of pseudo effect algebras
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 1
SP - 183
EP - 196
AB - In this paper we deal with a pseudo effect algebra $\mathcal {A}$ possessing a certain interpolation property. According to a result of Dvurečenskij and Vettterlein, $\mathcal {A}$ can be represented as an interval of a unital partially ordered group $G$. We prove that $\mathcal {A}$ is projectable (strongly projectable) if and only if $G$ is projectable (strongly projectable). An analogous result concerning weak homogeneity of $\mathcal {A}$ and of $G$ is shown to be valid.
LA - eng
KW - pseudo effect algebra; unital partially ordered group; internal direct factor; polar; projectability; strong projectability; weak homogeneity; pseudo effect algebra; unital partially ordered group; internal direct factor; polar; projectability; strong projectability; weak homogeneity
UR - http://eudml.org/doc/37916
ER -
References
top- Cignoli, R., D'Ottaviano, M. I., Mundici, D., 10.1007/978-94-015-9480-6, Kluwer Dordrecht (2000). (2000) DOI10.1007/978-94-015-9480-6
- Darnel, M. R., Theory of Lattice-Ordered Groups, Marcel Dekker New York (1995). (1995) Zbl0810.06016MR1304052
- Dvurečenskij, A., Vetterlein, T., 10.1023/A:1004192715509, Inter. J. Theor. Phys. 40 (2001), 685-701. (2001) MR1831592DOI10.1023/A:1004192715509
- Dvurečenskij, A., Vetterlein, T., 10.1023/A:1004144832348, Int. J. Theor. Phys. 40 (2001), 703-726. (2001) MR1831593DOI10.1023/A:1004144832348
- Dvurečenskij, A., Vetterlein, T., 10.1017/S1446788700008120, J. Aust. Math. Soc. 75 (2003), 295-311. (2003) MR2015319DOI10.1017/S1446788700008120
- Georgescu, G., Iorgulescu, A., Pseudo -algebras: a noncommutative extension of -algebras, In: Proceedings of the Fourth International Symposium on Economic Informatics, Bucharest, 6-9 May, Romania (1999), 961-968. (1999) Zbl0985.06007MR1730100
- Georgescu, G., Iorgulescu, A., Pseudo -algebras, Mult.-Valued Log. 6 (2001), 95-135. (2001) Zbl1014.06008MR1817439
- Jakubík, J., 10.1007/s10587-006-0090-9, Czechoslovak Math. J. 56 (2006), 1215-1227. (2006) Zbl1164.06315MR2280805DOI10.1007/s10587-006-0090-9
- Jakubík, J., Weak homogeneity of lattice ordered groups, Czechoslovak Math. J (to appear). MR2356285
- Jakubík, J., Direct product decompositions of pseudo effect algebras, Math. Slovaca 55 (2005), 379-398. (2005) MR2181779
- Rachůnek, J., 10.1023/A:1021766309509, Czechoslovak Math. J. 52 (2002), 255-273. (2002) MR1905434DOI10.1023/A:1021766309509
- Sikorski, R., Boolean Algebras, 2nd edition, Springer Berlin (1964). (1964) MR0177920
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.