Denjoy integral and Henstock-Kurzweil integral in vector lattices. II

Toshiharu Kawasaki

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 2, page 401-417
  • ISSN: 0011-4642

Abstract

top
In a previous paper we defined a Denjoy integral for mappings from a vector lattice to a complete vector lattice. In this paper we define a Henstock-Kurzweil integral for mappings from a vector lattice to a complete vector lattice and consider the relation between these two integrals.

How to cite

top

Kawasaki, Toshiharu. "Denjoy integral and Henstock-Kurzweil integral in vector lattices. II." Czechoslovak Mathematical Journal 59.2 (2009): 401-417. <http://eudml.org/doc/37931>.

@article{Kawasaki2009,
abstract = {In a previous paper we defined a Denjoy integral for mappings from a vector lattice to a complete vector lattice. In this paper we define a Henstock-Kurzweil integral for mappings from a vector lattice to a complete vector lattice and consider the relation between these two integrals.},
author = {Kawasaki, Toshiharu},
journal = {Czechoslovak Mathematical Journal},
keywords = {derivative; Denjoy integral; Henstock-Kurzweil integral; fundamental theorem of calculus; vector lattice; Riesz space; derivative; Denjoy integral; Henstock-Kurzweil integral; fundamental theorem of calculus; vector lattice; Riesz space},
language = {eng},
number = {2},
pages = {401-417},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Denjoy integral and Henstock-Kurzweil integral in vector lattices. II},
url = {http://eudml.org/doc/37931},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Kawasaki, Toshiharu
TI - Denjoy integral and Henstock-Kurzweil integral in vector lattices. II
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 2
SP - 401
EP - 417
AB - In a previous paper we defined a Denjoy integral for mappings from a vector lattice to a complete vector lattice. In this paper we define a Henstock-Kurzweil integral for mappings from a vector lattice to a complete vector lattice and consider the relation between these two integrals.
LA - eng
KW - derivative; Denjoy integral; Henstock-Kurzweil integral; fundamental theorem of calculus; vector lattice; Riesz space; derivative; Denjoy integral; Henstock-Kurzweil integral; fundamental theorem of calculus; vector lattice; Riesz space
UR - http://eudml.org/doc/37931
ER -

References

top
  1. Birkhoff, G., Lattice Theory, Amer. Math. Soc. (1940). (1940) Zbl0063.00402MR0001959
  2. Boccuto, A., Differential and integral calculus in Riesz spaces, Tatra Mt. Math. Publ. 14 (1998), 293-323. (1998) MR1651221
  3. Cristescu, R., Ordered Vector Spaces and Linear Operators, Abacus Press (1976). (1976) Zbl0322.46010MR0467238
  4. Izumi, S., 10.3792/pia/1195573784, Proc. Imp. Acad. Japan 18 (1942), 543-547. (1942) Zbl0061.09909MR0021080DOI10.3792/pia/1195573784
  5. Izumi, S., Sunouchi, G., Orihara, M., Kasahara, M., Theory of Denjoy integral, I--II, Japanese Proc. Physico-Mathematical Soc. Japan 17 (1943), 102-120, 321-353. (1943) 
  6. Kawasaki, T., Order derivative of operators in vector lattices, Math. Japonica 46 (1997), 79-84. (1997) Zbl0907.46038MR1466119
  7. Kawasaki, T., On Newton integration in vector spaces, Math. Japonica 46 (1997), 85-90. (1997) Zbl0913.46004MR1466120
  8. Kawasaki, T., Order Lebesgue integration in vector lattices, Math. Japonica 48 (1998), 13-17. (1998) Zbl0921.46041MR1644310
  9. Kawasaki, T., Approximately order derivatives in vector lattices, Math. Japonica 49 (1999), 229-239. (1999) Zbl0937.47041MR1687642
  10. Kawasaki, T., Order derivative and order Newton integral of operators in vector lattices, Far East J. Math. Sci. 1 (1999), 903-926. (1999) Zbl1069.46507MR1734826
  11. Kawasaki, T., Uniquely determinedness of the approximately order derivative, Sci. Math. Japonicae Online 7 (2002), 333-336 Sci. Math. Japonicae 57 (2003), 365-371. (2003) Zbl1039.46036MR1959995
  12. Kawasaki, T., Denjoy integral and Henstock-Kurzweil integral in vector lattices, I, (to appear). MR2532373
  13. Kubota, Y., Theory of the Integral, Japanese Maki (1977). (1977) 
  14. Lee, P. Y., Lanzhou Lectures on Henstock Integration, World Scientific (1989). (1989) Zbl0699.26004MR1050957
  15. Luxemburg, W. A. J., Zaanen, A. C., Riesz Spaces, North-Holland (1971). (1971) Zbl0231.46014
  16. McGill, P., 10.1112/jlms/s2-11.3.347, J. London Math. Soc. 11 (1975), 347-360. (1975) Zbl0309.28003MR0393414DOI10.1112/jlms/s2-11.3.347
  17. Riečan, B., Neubrunn, T., Integral, Measure, and Ordering, Kluwer (1997). (1997) MR1489521
  18. Romanovski, P., Intégrale de Denjoy dans les espaces abstraits, Recueil Mathématique (Mat. Sbornik) N.S. 9 (1941), 67-120. (1941) Zbl0026.00302MR0004292
  19. Schaefer, H. H., Banach Lattices and Positive Operators, Springer-Verlag (1974). (1974) Zbl0296.47023MR0423039
  20. Vulikh, B. Z., Introduction to the Theory of Partially Orderd Spaces, Wolters-Noordhoff (1967). (1967) MR0224522

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.