A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 3, page 637-648
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSchumacher, Katrin. "A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces." Czechoslovak Mathematical Journal 59.3 (2009): 637-648. <http://eudml.org/doc/37948>.
@article{Schumacher2009,
abstract = {Given a domain $\Omega $ of class $C^\{k,1\}$, $k\in \mathbb \{N\} $, we construct a chart that maps normals to the boundary of the half space to normals to the boundary of $\Omega $ in the sense that $(\partial - \{\partial x_n\})\alpha (x^\{\prime \},0)= - N(x^\{\prime \})$ and that still is of class $C^\{k,1\}$. As an application we prove the existence of a continuous extension operator for all normal derivatives of order 0 to $k$ on domains of class $C^\{k,1\}$. The construction of this operator is performed in weighted function spaces where the weight function is taken from the class of Muckenhoupt weights.},
author = {Schumacher, Katrin},
journal = {Czechoslovak Mathematical Journal},
keywords = {chart; coordinate transformation; normal vector; normal derivative; extension theorem; Muckenhoupt weight; chart; coordinate transformation; normal vector; normal derivative; extension theorem; Muckenhoupt weight},
language = {eng},
number = {3},
pages = {637-648},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces},
url = {http://eudml.org/doc/37948},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Schumacher, Katrin
TI - A chart preserving the normal vector and extensions of normal derivatives in weighted function spaces
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 3
SP - 637
EP - 648
AB - Given a domain $\Omega $ of class $C^{k,1}$, $k\in \mathbb {N} $, we construct a chart that maps normals to the boundary of the half space to normals to the boundary of $\Omega $ in the sense that $(\partial - {\partial x_n})\alpha (x^{\prime },0)= - N(x^{\prime })$ and that still is of class $C^{k,1}$. As an application we prove the existence of a continuous extension operator for all normal derivatives of order 0 to $k$ on domains of class $C^{k,1}$. The construction of this operator is performed in weighted function spaces where the weight function is taken from the class of Muckenhoupt weights.
LA - eng
KW - chart; coordinate transformation; normal vector; normal derivative; extension theorem; Muckenhoupt weight; chart; coordinate transformation; normal vector; normal derivative; extension theorem; Muckenhoupt weight
UR - http://eudml.org/doc/37948
ER -
References
top- Abels, H., 10.1007/s00021-004-0117-7, J. Math. Fluid Mech. 7 223-260 (2005). (2005) Zbl1083.35085MR2177128DOI10.1007/s00021-004-0117-7
- Chua, S.-K., 10.1512/iumj.1992.41.41053, Indiana Univ. Math. J. 41 1027-1076 (1992). (1992) Zbl0767.46025MR1206339DOI10.1512/iumj.1992.41.41053
- Curbera, G. P., García-Cuerva, J., Martell, J. M., Pérez, C., 10.1016/j.aim.2005.04.009, Adv. Math. 203 256-318 (2006). (2006) MR2231047DOI10.1016/j.aim.2005.04.009
- Evans, L. C., Partial Differential Equations, American Mathematical Society, Providence (1998). (1998) Zbl0902.35002MR1625845
- Farwig, R., Galdi, G. P., Sohr, H., 10.1007/3-7643-7385-7_7, Nonlinear Elliptic and Parabolic Problems, Progr. Nonlinear Differential Equations Appl., Birkhäuser 64 113-136 (2005). (2005) MR2185213DOI10.1007/3-7643-7385-7_7
- Farwig, R., Sohr, H., 10.2969/jmsj/04920251, J. Math. Soc. Japan 49 251-288 (1997). (1997) MR1601373DOI10.2969/jmsj/04920251
- Fröhlich, A., Stokes- und Navier-Stokes-Gleichungen in gewichteten Funktionenr�umen, Shaker Verlag, Aachen (2001). (2001)
- Fröhlich, A., 10.1007/s00021-003-0080-8, J. Math. Fluid Mech. 5 166-199 (2003). (2003) MR1982327DOI10.1007/s00021-003-0080-8
- Fröhlich, A., 10.1007/s00208-007-0114-2, Math. Ann. 339 287-316 (2007). (2007) MR2324721DOI10.1007/s00208-007-0114-2
- Galdi, G. P., Simader, C. G., Sohr, H., 10.1007/s00208-004-0573-7, Math. Ann. 331 41-74 (2005). (2005) Zbl1064.35133MR2107439DOI10.1007/s00208-004-0573-7
- García-Cuerva, J., Francia, J. L. Rubio de, Weighted norm inequalities and related topics, North Holland, Amsterdam (1985). (1985) MR0807149
- Giga, Y., 10.1007/BF01214869, Math. Z. 178 297-329 (1981). (1981) Zbl0473.35064MR0635201DOI10.1007/BF01214869
- Nečas, J., Les Méthodes Directes en Théorie des Équations Elliptiques, Academia, Prague (1967). (1967) MR0227584
- Schumacher, K., 10.1007/s11565-008-0038-0, Ann. dell'Univ. di Ferrara 54 123-144 (2008). (2008) Zbl1179.35225MR2403378DOI10.1007/s11565-008-0038-0
- Slobodeckiǐ, L. N., Generalized Sobolev spaces and their application to boundary problems for partial differential equations, Leningrad. Gos. Ped. Inst. Učen. Zap. 197 54-112 (1958). (1958) MR0203222
- Stein, E., Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series. 43, Princeton University Press, Princeton, N.J. (1993). (1993) Zbl0821.42001MR1232192
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.