On the 2 k -th power mean of L ' L ( 1 , χ ) with the weight of Gauss sums

Dongmei Ren; Yuan Yi

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 3, page 781-789
  • ISSN: 0011-4642

Abstract

top
The main purpose of this paper is to study the hybrid mean value of L ' L ( 1 , χ ) and Gauss sums by using the estimates for trigonometric sums as well as the analytic method. An asymptotic formula for the hybrid mean value χ χ 0 | τ ( χ ) | | L ' L ( 1 , χ ) | 2 k of L ' L and Gauss sums will be proved using analytic methods and estimates for trigonometric sums.

How to cite

top

Ren, Dongmei, and Yi, Yuan. "On the $2k$-th power mean of $\frac{L^{\prime }}{L}(1,\chi )$ with the weight of Gauss sums." Czechoslovak Mathematical Journal 59.3 (2009): 781-789. <http://eudml.org/doc/37958>.

@article{Ren2009,
abstract = {The main purpose of this paper is to study the hybrid mean value of $\frac\{L^\{\prime \}\}\{L\}(1,\chi )$ and Gauss sums by using the estimates for trigonometric sums as well as the analytic method. An asymptotic formula for the hybrid mean value $\sum _\{\chi \ne \chi _0\} |\tau (\chi )| |\frac\{L^\{\prime \}\}\{L\}(1,\chi )|^\{2k\}$ of $\frac\{L^\{\prime \}\}\{L\}$ and Gauss sums will be proved using analytic methods and estimates for trigonometric sums.},
author = {Ren, Dongmei, Yi, Yuan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Dirichlet L-function; Gauss sums; asymptotic formula; Dirichlet L-function; Gauss sum; asymptotic formula},
language = {eng},
number = {3},
pages = {781-789},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the $2k$-th power mean of $\frac\{L^\{\prime \}\}\{L\}(1,\chi )$ with the weight of Gauss sums},
url = {http://eudml.org/doc/37958},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Ren, Dongmei
AU - Yi, Yuan
TI - On the $2k$-th power mean of $\frac{L^{\prime }}{L}(1,\chi )$ with the weight of Gauss sums
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 3
SP - 781
EP - 789
AB - The main purpose of this paper is to study the hybrid mean value of $\frac{L^{\prime }}{L}(1,\chi )$ and Gauss sums by using the estimates for trigonometric sums as well as the analytic method. An asymptotic formula for the hybrid mean value $\sum _{\chi \ne \chi _0} |\tau (\chi )| |\frac{L^{\prime }}{L}(1,\chi )|^{2k}$ of $\frac{L^{\prime }}{L}$ and Gauss sums will be proved using analytic methods and estimates for trigonometric sums.
LA - eng
KW - Dirichlet L-function; Gauss sums; asymptotic formula; Dirichlet L-function; Gauss sum; asymptotic formula
UR - http://eudml.org/doc/37958
ER -

References

top
  1. Apostol, Tom M., Introduction to Analytic Number Theory, Springer-Verlag, New York (1976), 160-162. (1976) Zbl0335.10001MR0434929
  2. Chengdong, Pan, Chengbiao, Pan, Element of the Analytic Number Theory, Science Press, Beijing (1991), 243-248. (1991) 
  3. Ireland, K., Rosen, M., A Classical Introduction to Modern Number Theory, Springer-Verlag, New York (1982), 88-91. (1982) Zbl0482.10001MR0661047
  4. Yuan, Yi, Wenpeng, Zhang, On the first power mean of Dirichlet L-functions with the weight of Gauss sums, Journal of Systems Science and Mathematical Sciences 20 (2000), 346-351. (2000) MR1790030
  5. Yuan, Yi, Wenpeng, Zhang, On the 2 k -th Power mean of Dirichlet L-function with the weight of Gauss sums, Advances in Mathematics 31 (2002), 517-526. (2002) MR1959549
  6. Davenport, H., Multiplicative Number Theory, Springer-Verlag, New York (1980). (1980) Zbl0453.10002MR0606931
  7. Wenpeng, Zhang, A new mean value formula of Dirichlet's L-function, Science in China (Series A) 35 (1992), 1173-1179. (1992) MR1223064
  8. Huaning, Liu, Xiaobeng, Zhang, On the mean value of L ' L ( 1 , χ ) , Journal of Mathematical Analysis and Applications 320 (2006), 562-577. (2006) MR2225976
  9. Siegel, C. L., 10.4064/aa-1-1-83-86, Acta. Arith. 1 (1935), 83-86. (1935) Zbl0011.00903DOI10.4064/aa-1-1-83-86
  10. Chengdong, Pan, Chengbiao, Pan, The Elementary Number Theory, Peking University Press, Beijing (2003). (2003) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.