Further properties of Azimi-Hagler Banach spaces

Parviz Azimi; H. Khodabakhshian

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 4, page 871-878
  • ISSN: 0011-4642

How to cite

top

Azimi, Parviz, and Khodabakhshian, H.. "Further properties of Azimi-Hagler Banach spaces." Czechoslovak Mathematical Journal 59.4 (2009): 871-878. <http://eudml.org/doc/37964>.

@article{Azimi2009,
abstract = {},
author = {Azimi, Parviz, Khodabakhshian, H.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach spaces; compact operator; asymptotic isometric copy of $\ell _1$; Banach space; compact operator; asymptotic isometric copy of },
language = {eng},
number = {4},
pages = {871-878},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Further properties of Azimi-Hagler Banach spaces},
url = {http://eudml.org/doc/37964},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Azimi, Parviz
AU - Khodabakhshian, H.
TI - Further properties of Azimi-Hagler Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 871
EP - 878
AB -
LA - eng
KW - Banach spaces; compact operator; asymptotic isometric copy of $\ell _1$; Banach space; compact operator; asymptotic isometric copy of
UR - http://eudml.org/doc/37964
ER -

References

top
  1. Azimi, P., A new class of Banach sequence spaces, Bull. Iran. Math. Soc. 28 (2002), 57-68. (2002) Zbl1035.46006MR1992259
  2. Azimi, P., 10.11650/twjm/1500403857, Taiwanese J. Math. 10 (2006), 713-722. (2006) Zbl1108.46009MR2206324DOI10.11650/twjm/1500403857
  3. Azimi, P., Hagler, J., 10.2140/pjm.1986.122.287, Pac. J. Math. 122 (1987), 287-297. (1987) MR0831114DOI10.2140/pjm.1986.122.287
  4. Chen, D., 10.1016/S0022-247X(03)00368-8, J. Math. Anal. Appl. 284 (2003), 618-625. (2003) MR1998656DOI10.1016/S0022-247X(03)00368-8
  5. Chen, S., Lin, B. L., Dual action of asymptotically isometric copies of p ( 1 p < ) and c 0 , Collect. Math. 48 (1997), 449-458. (1997) Zbl0892.46014MR1602639
  6. Diestel, J., Sequence and Series in Banach Spaces, Springer New York (1983). (1983) MR0737004
  7. Dowling, P. N., 10.1006/jmaa.2000.6714, J. Math. Anal. Appl. 244 (2000), 223-227. (2000) Zbl0955.46011MR1746799DOI10.1006/jmaa.2000.6714
  8. Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces. I. Sequence Spaces, Springer Berlin (1977). (1977) Zbl0362.46013MR0500056
  9. Morrison, T. J., Functional Analysis: An Introduction to Banach Space Theory, John Wiley & Sons (2001). (2001) Zbl1005.46004MR1885114
  10. Pelczynski, A., 10.4064/sm-19-2-209-228, Stud. Math. 19 (1960), 209-228. (1960) Zbl0104.08503MR0126145DOI10.4064/sm-19-2-209-228
  11. Popov, M. M., More examples of hereditarily p Banach spaces, Ukrainian Math. Bull. 2 (2005), 95-111. (2005) Zbl1166.46304MR2172327

NotesEmbed ?

top

You must be logged in to post comments.