Further properties of Azimi-Hagler Banach spaces

Parviz Azimi; H. Khodabakhshian

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 4, page 871-878
  • ISSN: 0011-4642

How to cite

top

Azimi, Parviz, and Khodabakhshian, H.. "Further properties of Azimi-Hagler Banach spaces." Czechoslovak Mathematical Journal 59.4 (2009): 871-878. <http://eudml.org/doc/37964>.

@article{Azimi2009,
abstract = {},
author = {Azimi, Parviz, Khodabakhshian, H.},
journal = {Czechoslovak Mathematical Journal},
keywords = {Banach spaces; compact operator; asymptotic isometric copy of $\ell _1$; Banach space; compact operator; asymptotic isometric copy of },
language = {eng},
number = {4},
pages = {871-878},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Further properties of Azimi-Hagler Banach spaces},
url = {http://eudml.org/doc/37964},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Azimi, Parviz
AU - Khodabakhshian, H.
TI - Further properties of Azimi-Hagler Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 871
EP - 878
AB -
LA - eng
KW - Banach spaces; compact operator; asymptotic isometric copy of $\ell _1$; Banach space; compact operator; asymptotic isometric copy of
UR - http://eudml.org/doc/37964
ER -

References

top
  1. Azimi, P., A new class of Banach sequence spaces, Bull. Iran. Math. Soc. 28 (2002), 57-68. (2002) Zbl1035.46006MR1992259
  2. Azimi, P., 10.11650/twjm/1500403857, Taiwanese J. Math. 10 (2006), 713-722. (2006) Zbl1108.46009MR2206324DOI10.11650/twjm/1500403857
  3. Azimi, P., Hagler, J., 10.2140/pjm.1986.122.287, Pac. J. Math. 122 (1987), 287-297. (1987) MR0831114DOI10.2140/pjm.1986.122.287
  4. Chen, D., 10.1016/S0022-247X(03)00368-8, J. Math. Anal. Appl. 284 (2003), 618-625. (2003) MR1998656DOI10.1016/S0022-247X(03)00368-8
  5. Chen, S., Lin, B. L., Dual action of asymptotically isometric copies of p ( 1 p < ) and c 0 , Collect. Math. 48 (1997), 449-458. (1997) Zbl0892.46014MR1602639
  6. Diestel, J., Sequence and Series in Banach Spaces, Springer New York (1983). (1983) MR0737004
  7. Dowling, P. N., 10.1006/jmaa.2000.6714, J. Math. Anal. Appl. 244 (2000), 223-227. (2000) Zbl0955.46011MR1746799DOI10.1006/jmaa.2000.6714
  8. Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces. I. Sequence Spaces, Springer Berlin (1977). (1977) Zbl0362.46013MR0500056
  9. Morrison, T. J., Functional Analysis: An Introduction to Banach Space Theory, John Wiley & Sons (2001). (2001) Zbl1005.46004MR1885114
  10. Pelczynski, A., 10.4064/sm-19-2-209-228, Stud. Math. 19 (1960), 209-228. (1960) Zbl0104.08503MR0126145DOI10.4064/sm-19-2-209-228
  11. Popov, M. M., More examples of hereditarily p Banach spaces, Ukrainian Math. Bull. 2 (2005), 95-111. (2005) Zbl1166.46304MR2172327

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.