Weak solutions to stochastic differential equations driven by fractional Brownian motion

J. Šnupárková

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 4, page 879-907
  • ISSN: 0011-4642

Abstract

top
Existence of a weak solution to the n -dimensional system of stochastic differential equations driven by a fractional Brownian motion with the Hurst parameter H ( 0 , 1 ) { 1 2 } is shown for a time-dependent but state-independent diffusion and a drift that may by split into a regular part and a singular one which, however, satisfies the hypotheses of the Girsanov Theorem. In particular, a stochastic nonlinear oscillator driven by a fractional noise is considered.

How to cite

top

Šnupárková, J.. "Weak solutions to stochastic differential equations driven by fractional Brownian motion." Czechoslovak Mathematical Journal 59.4 (2009): 879-907. <http://eudml.org/doc/37965>.

@article{Šnupárková2009,
abstract = {Existence of a weak solution to the $n$-dimensional system of stochastic differential equations driven by a fractional Brownian motion with the Hurst parameter $H\in (0,1)\setminus \lbrace \frac\{1\}\{2\}\rbrace $ is shown for a time-dependent but state-independent diffusion and a drift that may by split into a regular part and a singular one which, however, satisfies the hypotheses of the Girsanov Theorem. In particular, a stochastic nonlinear oscillator driven by a fractional noise is considered.},
author = {Šnupárková, J.},
journal = {Czechoslovak Mathematical Journal},
keywords = {fractional Brownian motion; Girsanov theorem; weak solutions; fractional Brownian motion; Girsanov theorem; weak solution},
language = {eng},
number = {4},
pages = {879-907},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak solutions to stochastic differential equations driven by fractional Brownian motion},
url = {http://eudml.org/doc/37965},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Šnupárková, J.
TI - Weak solutions to stochastic differential equations driven by fractional Brownian motion
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 879
EP - 907
AB - Existence of a weak solution to the $n$-dimensional system of stochastic differential equations driven by a fractional Brownian motion with the Hurst parameter $H\in (0,1)\setminus \lbrace \frac{1}{2}\rbrace $ is shown for a time-dependent but state-independent diffusion and a drift that may by split into a regular part and a singular one which, however, satisfies the hypotheses of the Girsanov Theorem. In particular, a stochastic nonlinear oscillator driven by a fractional noise is considered.
LA - eng
KW - fractional Brownian motion; Girsanov theorem; weak solutions; fractional Brownian motion; Girsanov theorem; weak solution
UR - http://eudml.org/doc/37965
ER -

References

top
  1. Alòs, E., Mazet, O., Nualart, D., 10.1214/aop/1008956692, Ann. Probab. 29 (2001), 766-801. (2001) MR1849177DOI10.1214/aop/1008956692
  2. Boufoussi, B., Ouknine, Y., 10.1214/ECP.v8-1084, Elect. Comm. Probab. 8 (2003), 122-134. (2003) Zbl1060.60060MR2042751DOI10.1214/ECP.v8-1084
  3. Cheridito, P., Nualart, D., 10.1016/j.anihpb.2004.09.004, Ann. I. H. Poincaré Probab. Stat. 41 (2005), 1049-1081. (2005) MR2172209DOI10.1016/j.anihpb.2004.09.004
  4. Prato, G. Da, Zabczyk, J., Stochastic Equations in Infinite Dimensions, Cambdridge University Press, Cambridge (1992). (1992) Zbl0761.60052MR1207136
  5. Decreusefond, L., Üstunel, A. S., 10.1023/A:1008634027843, Potential Anal. 10 (1999), 177-214. (1999) MR1677455DOI10.1023/A:1008634027843
  6. Denis, L., Erraoni, M., Ouknine, Y., 10.1080/10451120412331299336, Stoch. Stoch. Rep. 76 (2004), 409-427. (2004) MR2096729DOI10.1080/10451120412331299336
  7. Duncan, T. E., Maslowski, B., Pasik-Duncan, B., Semilinear stochastic equations in a Hilbert space with a fractional Brownian motion, (to appear) in SIAM J. Math. Anal. MR2481295
  8. Duncan, T. E., Maslowski, B., Pasik-Duncan, B., Linear stochastic equations in a Hilbert space with a fractional Brownian motion, Control Theory Applications in Financial Engineering and Manufacturing, Chapter 11, 201-222, Springer-Verlag, New York (2006). (2006) MR2353483
  9. Fernique, X., Régularité des trajectoires des fonctions aléatoires gaussiennes, École d'Été de Probabilités de Saint-Flour IV--1974, LNM 480, Springer-Verlag, Berlin (1975), 1-96. (1975) Zbl0331.60025MR0413238
  10. Friedman, A., Stochastic Differential Equations and Applications, vol. I, AP, New York (1975). (1975) MR0494490
  11. Hu, Y., Integral transformations and anticipative calculus for fractional Brownian motions, Mem. Amer. Math. Soc. 175 (2005). (2005) Zbl1072.60044MR2130224
  12. Hu, Y., Nualart, D., Differential equations driven by Hölder continuous functions of order greater than 1 / 2 , Stochastic analysis and applications, 399-413, Springer, Berlin (2007). (2007) Zbl1144.34038MR2397797
  13. Karatzas, I., Shreve, S. E., Brownian Motion and Stochastic Calculus, Springer-Verlag, New York (1988). (1988) Zbl0638.60065MR0917065
  14. Kufner, A., John, O., Fučík, S., Function Spaces, Academia, Praha (1977). (1977) MR0482102
  15. Kurzweil, J., Ordinary Differential Equations, Elsevier, Amsterdam (1986). (1986) Zbl0667.34002MR0929466
  16. Lyons, T., 10.4171/RMI/240, Rev. Mat. Iberoamericana 14 (1998), 215-310. (1998) Zbl0923.34056MR1654527DOI10.4171/RMI/240
  17. Lyons, T., 10.4310/MRL.1994.v1.n4.a5, Math. Res. Lett. 1 (1994), 451-464. (1994) Zbl0835.34004MR1302388DOI10.4310/MRL.1994.v1.n4.a5
  18. Maslowski, B., Nualart, D., 10.1016/S0022-1236(02)00065-4, J. Funct. Anal. 202 (2003), 277-305. (2003) Zbl1027.60060MR1994773DOI10.1016/S0022-1236(02)00065-4
  19. Mémin, J., Mishura, Y., Valkeila, E., 10.1016/S0167-7152(00)00157-7, Stat. Prob. Lett. 51 (2001), 197-206. (2001) MR1822771DOI10.1016/S0167-7152(00)00157-7
  20. Mishura, Y., Nualart, D., 10.1016/j.spl.2004.10.011, Stat. Probab. Lett. 70 (2004), 253-261. (2004) MR2125162DOI10.1016/j.spl.2004.10.011
  21. Nourdin, I., Simon, T., 10.1016/j.spl.2005.10.021, Statist. Probab. Lett. 76 (2006), 907-912. (2006) Zbl1091.60008MR2268434DOI10.1016/j.spl.2005.10.021
  22. Nualart, D., Rǎşcanu, A., Differential Equations driven by Fractional Brownian Motion, Collect. Math. 53 (2002), 55-81. (2002) MR1893308
  23. Nualart, D., Ouknine, Y., 10.1016/S0304-4149(02)00155-2, Stochastic Process. Appl. 102 (2002), 103-116. (2002) Zbl1075.60536MR1934157DOI10.1016/S0304-4149(02)00155-2
  24. Nualart, D., Ouknine, Y., Stochastic differential equations with additive fractional noise and locally unbounded drift, Stochastic inequalities and applications, 353-365, Birkhäuser, Basel (2003). (2003) Zbl1039.60061MR2073441
  25. Nualart, D., 10.1090/conm/336/06025, Stochastic models (Mexico City, 2002), 3-39, Contemp. Math., 336, Amer. Math. Soc., Providence, RI (2003). (2003) Zbl1063.60080MR2037156DOI10.1090/conm/336/06025
  26. Zähle, M., 10.1002/mana.200310295, Math. Nachr. 278 (2005), 1097-1106. (2005) MR2150381DOI10.1002/mana.200310295

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.