Weak solutions to stochastic differential equations driven by fractional Brownian motion
Czechoslovak Mathematical Journal (2009)
- Volume: 59, Issue: 4, page 879-907
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topŠnupárková, J.. "Weak solutions to stochastic differential equations driven by fractional Brownian motion." Czechoslovak Mathematical Journal 59.4 (2009): 879-907. <http://eudml.org/doc/37965>.
@article{Šnupárková2009,
abstract = {Existence of a weak solution to the $n$-dimensional system of stochastic differential equations driven by a fractional Brownian motion with the Hurst parameter $H\in (0,1)\setminus \lbrace \frac\{1\}\{2\}\rbrace $ is shown for a time-dependent but state-independent diffusion and a drift that may by split into a regular part and a singular one which, however, satisfies the hypotheses of the Girsanov Theorem. In particular, a stochastic nonlinear oscillator driven by a fractional noise is considered.},
author = {Šnupárková, J.},
journal = {Czechoslovak Mathematical Journal},
keywords = {fractional Brownian motion; Girsanov theorem; weak solutions; fractional Brownian motion; Girsanov theorem; weak solution},
language = {eng},
number = {4},
pages = {879-907},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak solutions to stochastic differential equations driven by fractional Brownian motion},
url = {http://eudml.org/doc/37965},
volume = {59},
year = {2009},
}
TY - JOUR
AU - Šnupárková, J.
TI - Weak solutions to stochastic differential equations driven by fractional Brownian motion
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 879
EP - 907
AB - Existence of a weak solution to the $n$-dimensional system of stochastic differential equations driven by a fractional Brownian motion with the Hurst parameter $H\in (0,1)\setminus \lbrace \frac{1}{2}\rbrace $ is shown for a time-dependent but state-independent diffusion and a drift that may by split into a regular part and a singular one which, however, satisfies the hypotheses of the Girsanov Theorem. In particular, a stochastic nonlinear oscillator driven by a fractional noise is considered.
LA - eng
KW - fractional Brownian motion; Girsanov theorem; weak solutions; fractional Brownian motion; Girsanov theorem; weak solution
UR - http://eudml.org/doc/37965
ER -
References
top- Alòs, E., Mazet, O., Nualart, D., 10.1214/aop/1008956692, Ann. Probab. 29 (2001), 766-801. (2001) MR1849177DOI10.1214/aop/1008956692
- Boufoussi, B., Ouknine, Y., 10.1214/ECP.v8-1084, Elect. Comm. Probab. 8 (2003), 122-134. (2003) Zbl1060.60060MR2042751DOI10.1214/ECP.v8-1084
- Cheridito, P., Nualart, D., 10.1016/j.anihpb.2004.09.004, Ann. I. H. Poincaré Probab. Stat. 41 (2005), 1049-1081. (2005) MR2172209DOI10.1016/j.anihpb.2004.09.004
- Prato, G. Da, Zabczyk, J., Stochastic Equations in Infinite Dimensions, Cambdridge University Press, Cambridge (1992). (1992) Zbl0761.60052MR1207136
- Decreusefond, L., Üstunel, A. S., 10.1023/A:1008634027843, Potential Anal. 10 (1999), 177-214. (1999) MR1677455DOI10.1023/A:1008634027843
- Denis, L., Erraoni, M., Ouknine, Y., 10.1080/10451120412331299336, Stoch. Stoch. Rep. 76 (2004), 409-427. (2004) MR2096729DOI10.1080/10451120412331299336
- Duncan, T. E., Maslowski, B., Pasik-Duncan, B., Semilinear stochastic equations in a Hilbert space with a fractional Brownian motion, (to appear) in SIAM J. Math. Anal. MR2481295
- Duncan, T. E., Maslowski, B., Pasik-Duncan, B., Linear stochastic equations in a Hilbert space with a fractional Brownian motion, Control Theory Applications in Financial Engineering and Manufacturing, Chapter 11, 201-222, Springer-Verlag, New York (2006). (2006) MR2353483
- Fernique, X., Régularité des trajectoires des fonctions aléatoires gaussiennes, École d'Été de Probabilités de Saint-Flour IV--1974, LNM 480, Springer-Verlag, Berlin (1975), 1-96. (1975) Zbl0331.60025MR0413238
- Friedman, A., Stochastic Differential Equations and Applications, vol. I, AP, New York (1975). (1975) MR0494490
- Hu, Y., Integral transformations and anticipative calculus for fractional Brownian motions, Mem. Amer. Math. Soc. 175 (2005). (2005) Zbl1072.60044MR2130224
- Hu, Y., Nualart, D., Differential equations driven by Hölder continuous functions of order greater than , Stochastic analysis and applications, 399-413, Springer, Berlin (2007). (2007) Zbl1144.34038MR2397797
- Karatzas, I., Shreve, S. E., Brownian Motion and Stochastic Calculus, Springer-Verlag, New York (1988). (1988) Zbl0638.60065MR0917065
- Kufner, A., John, O., Fučík, S., Function Spaces, Academia, Praha (1977). (1977) MR0482102
- Kurzweil, J., Ordinary Differential Equations, Elsevier, Amsterdam (1986). (1986) Zbl0667.34002MR0929466
- Lyons, T., 10.4171/RMI/240, Rev. Mat. Iberoamericana 14 (1998), 215-310. (1998) Zbl0923.34056MR1654527DOI10.4171/RMI/240
- Lyons, T., 10.4310/MRL.1994.v1.n4.a5, Math. Res. Lett. 1 (1994), 451-464. (1994) Zbl0835.34004MR1302388DOI10.4310/MRL.1994.v1.n4.a5
- Maslowski, B., Nualart, D., 10.1016/S0022-1236(02)00065-4, J. Funct. Anal. 202 (2003), 277-305. (2003) Zbl1027.60060MR1994773DOI10.1016/S0022-1236(02)00065-4
- Mémin, J., Mishura, Y., Valkeila, E., 10.1016/S0167-7152(00)00157-7, Stat. Prob. Lett. 51 (2001), 197-206. (2001) MR1822771DOI10.1016/S0167-7152(00)00157-7
- Mishura, Y., Nualart, D., 10.1016/j.spl.2004.10.011, Stat. Probab. Lett. 70 (2004), 253-261. (2004) MR2125162DOI10.1016/j.spl.2004.10.011
- Nourdin, I., Simon, T., 10.1016/j.spl.2005.10.021, Statist. Probab. Lett. 76 (2006), 907-912. (2006) Zbl1091.60008MR2268434DOI10.1016/j.spl.2005.10.021
- Nualart, D., Rǎşcanu, A., Differential Equations driven by Fractional Brownian Motion, Collect. Math. 53 (2002), 55-81. (2002) MR1893308
- Nualart, D., Ouknine, Y., 10.1016/S0304-4149(02)00155-2, Stochastic Process. Appl. 102 (2002), 103-116. (2002) Zbl1075.60536MR1934157DOI10.1016/S0304-4149(02)00155-2
- Nualart, D., Ouknine, Y., Stochastic differential equations with additive fractional noise and locally unbounded drift, Stochastic inequalities and applications, 353-365, Birkhäuser, Basel (2003). (2003) Zbl1039.60061MR2073441
- Nualart, D., 10.1090/conm/336/06025, Stochastic models (Mexico City, 2002), 3-39, Contemp. Math., 336, Amer. Math. Soc., Providence, RI (2003). (2003) Zbl1063.60080MR2037156DOI10.1090/conm/336/06025
- Zähle, M., 10.1002/mana.200310295, Math. Nachr. 278 (2005), 1097-1106. (2005) MR2150381DOI10.1002/mana.200310295
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.