Stochastic integral of divergence type with respect to fractional brownian motion with Hurst parameter H ( 0 , 1 2 )

Patrick Cheridito; David Nualart

Annales de l'I.H.P. Probabilités et statistiques (2005)

  • Volume: 41, Issue: 6, page 1049-1081
  • ISSN: 0246-0203

How to cite

top

Cheridito, Patrick, and Nualart, David. "Stochastic integral of divergence type with respect to fractional brownian motion with Hurst parameter $H\in (0,\frac{1}{2})$." Annales de l'I.H.P. Probabilités et statistiques 41.6 (2005): 1049-1081. <http://eudml.org/doc/77878>.

@article{Cheridito2005,
author = {Cheridito, Patrick, Nualart, David},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {extended stochastic integral; symmetric integral},
language = {eng},
number = {6},
pages = {1049-1081},
publisher = {Elsevier},
title = {Stochastic integral of divergence type with respect to fractional brownian motion with Hurst parameter $H\in (0,\frac\{1\}\{2\})$},
url = {http://eudml.org/doc/77878},
volume = {41},
year = {2005},
}

TY - JOUR
AU - Cheridito, Patrick
AU - Nualart, David
TI - Stochastic integral of divergence type with respect to fractional brownian motion with Hurst parameter $H\in (0,\frac{1}{2})$
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 6
SP - 1049
EP - 1081
LA - eng
KW - extended stochastic integral; symmetric integral
UR - http://eudml.org/doc/77878
ER -

References

top
  1. [1] E. Alòs, J.A. León, D. Nualart, Stochastic Stratonovich calculus for fractional Brownian motion with Hurst parameter less than 1 / 2 , Taiwanese J. Math.5 (3) (2001) 609-632. Zbl0989.60054MR1849782
  2. [2] E. Alòs, O. Mazet, D. Nualart, Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1 / 2 , Stochastic Process Appl.86 (1) (2000) 121-139. Zbl1028.60047MR1741199
  3. [3] E. Alòs, O. Mazet, D. Nualart, Stochastic calculus with respect to Gaussian processes, Ann. Probab.29 (2) (2001) 766-801. Zbl1015.60047MR1849177
  4. [4] C. Bender, An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter, Stochastic Process Appl.104 (1) (2003) 81-106. Zbl1075.60530MR1956473
  5. [5] S. Berman, Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J.23 (1973) 69-94. Zbl0264.60024MR317397
  6. [6] P. Carmona, L. Coutin, G. Montseny, Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist.39 (1) (2003) 27-68. Zbl1016.60043MR1959841
  7. [7] L. Coutin, D. Nualart, C.A. Tudor, Tanaka formula for the fractional Brownian motion, Stochastic Process Appl.94 (2) (2001) 301-315. Zbl1053.60055MR1840834
  8. [8] L. Coutin, Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Related Fields122 (1) (2002) 108-140. Zbl1047.60029MR1883719
  9. [9] L. Decreusefond, A.S. Üstünel, Stochastic analysis of the fractional Brownian motion, Potential Anal.10 (2) (1999) 177-214. Zbl0924.60034MR1677455
  10. [10] T.E. Duncan, Y. Hu, B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion I. Theory, SIAM J. Control Optim.38 (2) (2000) 582-612. Zbl0947.60061MR1741154
  11. [11] B. Gaveau, P. Trauber, L'integrale stochastique comme opérateur de divergence dans l'espace fonctionnel, J. Funct. Anal.46 (2) (1982) 230-238. Zbl0488.60068MR660187
  12. [12] M. Gradinaru, F. Russo, P. Vallois, Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index H 1 / 4 , Ann. Probab.31 (4) (2003) 1772-1820. Zbl1059.60067
  13. [13] M. Gradinaru, I. Nourdin, F. Russo, P. Vallois, m-order integrals and generalized Itô's formula: the case of a fractional Brownian motion with any Hurst index, Preprint, 2002. Zbl1083.60045
  14. [14] Y. Hu, Probability structure preserving and absolute continuity, Ann. Inst. H. Poincaré38 (4) (2002) 557-580. Zbl1002.60046MR1914939
  15. [15] Y. Hu, B. Øksendal, Fractional white noise calculus and applications to finance, Inf. Dim. Anal. Quant. Probab. Rel. Top.6 (1) (2003) 1-32. Zbl1045.60072MR1976868
  16. [16] K. Itô, Stochastic integral, Proc. Imperial Acad. Tokyo20 (1944) 519-524. Zbl0060.29105MR14633
  17. [17] S.J. Lin, Stochastic analysis of fractional Brownian motions, Stochastics Stochastics Rep.55 (1995) 121-140. Zbl0886.60076MR1382288
  18. [18] Sh.R. Liptser, A.N. Shiryaev, Theory of Martingales, Kluwer Academic, Dordrecht, 1989. Zbl0728.60048MR1022664
  19. [19] S. Maheswaran, C.A. Sims, Empirical implications of arbitrage-free asset markets, in: Phillips P.C.B. (Ed.), Models, Methods and Applications of Econometrics, Blackwell, 1993. 
  20. [20] P. Malliavin, Stochastic Analysis, Springer, 1997. Zbl0878.60001MR1450093
  21. [21] T. Mikosch, R. Norvaiša, Stochastic integral equations without probability, Bernoulli6 (3) (2000) 401-434. Zbl0963.60060MR1762553
  22. [22] D. Nualart, The Malliavin Calculus and Related Topics, Springer, 1995. Zbl0837.60050MR1344217
  23. [23] D. Nualart, E. Pardoux, Stochastic calculus with anticipating integrands, Probab. Theory Related Fields78 (4) (1988) 535-581. Zbl0629.60061MR950346
  24. [24] V. Pipiras, M.S. Taqqu, Integration questions related to fractional Brownian motion, Probab. Theory Related Fields118 (2) (2000) 251-291. Zbl0970.60058MR1790083
  25. [25] V. Pipiras, M.S. Taqqu, Are classes of deterministic integrands for fractional Brownian motion on an interval complete?, Bernoulli7 (6) (2001) 873-897. Zbl1003.60055MR1873833
  26. [26] N. Privault, Skorohod stochastic integration with respect to non-adapted processes on Wiener space, Stochastics Stochastics Rep.65 (1998) 13-39. Zbl0918.60038MR1708428
  27. [27] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, 1999. Zbl0917.60006MR1725357
  28. [28] F. Russo, P. Vallois, Forward, backward and symmetric stochastic integration, Probab. Theory Related Fields97 (3) (1993) 403-421. Zbl0792.60046MR1245252
  29. [29] F. Russo, P. Vallois, The generalized covariation process and Itô formula, Stochastic Process Appl.59 (1) (1995) 81-104. Zbl0840.60052MR1350257
  30. [30] F. Russo, P. Vallois, Itô formula for C 1 -functions of semimartingales, Probab. Theory Related Fields104 (1) (1996) 27-41. Zbl0838.60045MR1367665
  31. [31] L.C.G. Rogers, Arbitrage with fractional Brownian motion, Math. Finance7 (1) (1997) 95-105. Zbl0884.90045MR1434408
  32. [32] F.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, 1993. Zbl0818.26003MR1347689
  33. [33] L.C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. (Sweden)67 (1936) 251-282. Zbl0016.10404MR1555421
  34. [34] M. Zähle, Integration with respect to fractal functions and stochasic calculus. I, Probab. Theory Related Fields111 (3) (1998) 333-374. Zbl0918.60037MR1640795

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.