Stochastic integral of divergence type with respect to fractional brownian motion with Hurst parameter
Patrick Cheridito; David Nualart
Annales de l'I.H.P. Probabilités et statistiques (2005)
- Volume: 41, Issue: 6, page 1049-1081
- ISSN: 0246-0203
Access Full Article
topHow to cite
topCheridito, Patrick, and Nualart, David. "Stochastic integral of divergence type with respect to fractional brownian motion with Hurst parameter $H\in (0,\frac{1}{2})$." Annales de l'I.H.P. Probabilités et statistiques 41.6 (2005): 1049-1081. <http://eudml.org/doc/77878>.
@article{Cheridito2005,
author = {Cheridito, Patrick, Nualart, David},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {extended stochastic integral; symmetric integral},
language = {eng},
number = {6},
pages = {1049-1081},
publisher = {Elsevier},
title = {Stochastic integral of divergence type with respect to fractional brownian motion with Hurst parameter $H\in (0,\frac\{1\}\{2\})$},
url = {http://eudml.org/doc/77878},
volume = {41},
year = {2005},
}
TY - JOUR
AU - Cheridito, Patrick
AU - Nualart, David
TI - Stochastic integral of divergence type with respect to fractional brownian motion with Hurst parameter $H\in (0,\frac{1}{2})$
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2005
PB - Elsevier
VL - 41
IS - 6
SP - 1049
EP - 1081
LA - eng
KW - extended stochastic integral; symmetric integral
UR - http://eudml.org/doc/77878
ER -
References
top- [1] E. Alòs, J.A. León, D. Nualart, Stochastic Stratonovich calculus for fractional Brownian motion with Hurst parameter less than , Taiwanese J. Math.5 (3) (2001) 609-632. Zbl0989.60054MR1849782
- [2] E. Alòs, O. Mazet, D. Nualart, Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than , Stochastic Process Appl.86 (1) (2000) 121-139. Zbl1028.60047MR1741199
- [3] E. Alòs, O. Mazet, D. Nualart, Stochastic calculus with respect to Gaussian processes, Ann. Probab.29 (2) (2001) 766-801. Zbl1015.60047MR1849177
- [4] C. Bender, An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter, Stochastic Process Appl.104 (1) (2003) 81-106. Zbl1075.60530MR1956473
- [5] S. Berman, Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J.23 (1973) 69-94. Zbl0264.60024MR317397
- [6] P. Carmona, L. Coutin, G. Montseny, Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist.39 (1) (2003) 27-68. Zbl1016.60043MR1959841
- [7] L. Coutin, D. Nualart, C.A. Tudor, Tanaka formula for the fractional Brownian motion, Stochastic Process Appl.94 (2) (2001) 301-315. Zbl1053.60055MR1840834
- [8] L. Coutin, Z. Qian, Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Related Fields122 (1) (2002) 108-140. Zbl1047.60029MR1883719
- [9] L. Decreusefond, A.S. Üstünel, Stochastic analysis of the fractional Brownian motion, Potential Anal.10 (2) (1999) 177-214. Zbl0924.60034MR1677455
- [10] T.E. Duncan, Y. Hu, B. Pasik-Duncan, Stochastic calculus for fractional Brownian motion I. Theory, SIAM J. Control Optim.38 (2) (2000) 582-612. Zbl0947.60061MR1741154
- [11] B. Gaveau, P. Trauber, L'integrale stochastique comme opérateur de divergence dans l'espace fonctionnel, J. Funct. Anal.46 (2) (1982) 230-238. Zbl0488.60068MR660187
- [12] M. Gradinaru, F. Russo, P. Vallois, Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index , Ann. Probab.31 (4) (2003) 1772-1820. Zbl1059.60067
- [13] M. Gradinaru, I. Nourdin, F. Russo, P. Vallois, m-order integrals and generalized Itô's formula: the case of a fractional Brownian motion with any Hurst index, Preprint, 2002. Zbl1083.60045
- [14] Y. Hu, Probability structure preserving and absolute continuity, Ann. Inst. H. Poincaré38 (4) (2002) 557-580. Zbl1002.60046MR1914939
- [15] Y. Hu, B. Øksendal, Fractional white noise calculus and applications to finance, Inf. Dim. Anal. Quant. Probab. Rel. Top.6 (1) (2003) 1-32. Zbl1045.60072MR1976868
- [16] K. Itô, Stochastic integral, Proc. Imperial Acad. Tokyo20 (1944) 519-524. Zbl0060.29105MR14633
- [17] S.J. Lin, Stochastic analysis of fractional Brownian motions, Stochastics Stochastics Rep.55 (1995) 121-140. Zbl0886.60076MR1382288
- [18] Sh.R. Liptser, A.N. Shiryaev, Theory of Martingales, Kluwer Academic, Dordrecht, 1989. Zbl0728.60048MR1022664
- [19] S. Maheswaran, C.A. Sims, Empirical implications of arbitrage-free asset markets, in: Phillips P.C.B. (Ed.), Models, Methods and Applications of Econometrics, Blackwell, 1993.
- [20] P. Malliavin, Stochastic Analysis, Springer, 1997. Zbl0878.60001MR1450093
- [21] T. Mikosch, R. Norvaiša, Stochastic integral equations without probability, Bernoulli6 (3) (2000) 401-434. Zbl0963.60060MR1762553
- [22] D. Nualart, The Malliavin Calculus and Related Topics, Springer, 1995. Zbl0837.60050MR1344217
- [23] D. Nualart, E. Pardoux, Stochastic calculus with anticipating integrands, Probab. Theory Related Fields78 (4) (1988) 535-581. Zbl0629.60061MR950346
- [24] V. Pipiras, M.S. Taqqu, Integration questions related to fractional Brownian motion, Probab. Theory Related Fields118 (2) (2000) 251-291. Zbl0970.60058MR1790083
- [25] V. Pipiras, M.S. Taqqu, Are classes of deterministic integrands for fractional Brownian motion on an interval complete?, Bernoulli7 (6) (2001) 873-897. Zbl1003.60055MR1873833
- [26] N. Privault, Skorohod stochastic integration with respect to non-adapted processes on Wiener space, Stochastics Stochastics Rep.65 (1998) 13-39. Zbl0918.60038MR1708428
- [27] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, Springer, 1999. Zbl0917.60006MR1725357
- [28] F. Russo, P. Vallois, Forward, backward and symmetric stochastic integration, Probab. Theory Related Fields97 (3) (1993) 403-421. Zbl0792.60046MR1245252
- [29] F. Russo, P. Vallois, The generalized covariation process and Itô formula, Stochastic Process Appl.59 (1) (1995) 81-104. Zbl0840.60052MR1350257
- [30] F. Russo, P. Vallois, Itô formula for -functions of semimartingales, Probab. Theory Related Fields104 (1) (1996) 27-41. Zbl0838.60045MR1367665
- [31] L.C.G. Rogers, Arbitrage with fractional Brownian motion, Math. Finance7 (1) (1997) 95-105. Zbl0884.90045MR1434408
- [32] F.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach, 1993. Zbl0818.26003MR1347689
- [33] L.C. Young, An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. (Sweden)67 (1936) 251-282. Zbl0016.10404MR1555421
- [34] M. Zähle, Integration with respect to fractal functions and stochasic calculus. I, Probab. Theory Related Fields111 (3) (1998) 333-374. Zbl0918.60037MR1640795
Citations in EuDML Documents
top- Ivan Nourdin, David Nualart, Ciprian A. Tudor, Central and non-central limit theorems for weighted power variations of fractional brownian motion
- David Nualart, Stochastic calculus with respect to fractional Brownian motion
- Laure Coutin, Nicolas Victoir, Enhanced Gaussian processes and applications
- J. Šnupárková, Weak solutions to stochastic differential equations driven by fractional Brownian motion
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.