Some examples of continuous images of Radon-Nikodým compact spaces

Alexander D. Arvanitakis; Antonio Avilés

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 4, page 1027-1038
  • ISSN: 0011-4642

Abstract

top
We provide a characterization of continuous images of Radon-Nikodým compacta lying in a product of real lines and model on it a method for constructing natural examples of such continuous images.

How to cite

top

Arvanitakis, Alexander D., and Avilés, Antonio. "Some examples of continuous images of Radon-Nikodým compact spaces." Czechoslovak Mathematical Journal 59.4 (2009): 1027-1038. <http://eudml.org/doc/37975>.

@article{Arvanitakis2009,
abstract = {We provide a characterization of continuous images of Radon-Nikodým compacta lying in a product of real lines and model on it a method for constructing natural examples of such continuous images.},
author = {Arvanitakis, Alexander D., Avilés, Antonio},
journal = {Czechoslovak Mathematical Journal},
keywords = {Radon-Nikodým compact},
language = {eng},
number = {4},
pages = {1027-1038},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some examples of continuous images of Radon-Nikodým compact spaces},
url = {http://eudml.org/doc/37975},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Arvanitakis, Alexander D.
AU - Avilés, Antonio
TI - Some examples of continuous images of Radon-Nikodým compact spaces
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 1027
EP - 1038
AB - We provide a characterization of continuous images of Radon-Nikodým compacta lying in a product of real lines and model on it a method for constructing natural examples of such continuous images.
LA - eng
KW - Radon-Nikodým compact
UR - http://eudml.org/doc/37975
ER -

References

top
  1. Arvanitakis, A. D., 10.4064/fm172-1-4, Fund. Math. 172 (2002), 41-60. (2002) Zbl1012.46021MR1898402DOI10.4064/fm172-1-4
  2. Avilés, A., 10.4064/sm166-1-5, Studia Math. 166 (2005), 71-82. (2005) MR2108319DOI10.4064/sm166-1-5
  3. Avilés, A., 10.1016/j.topol.2006.05.004, Topology Appl. 154 (2007), 404-409. (2007) MR2278688DOI10.1016/j.topol.2006.05.004
  4. Fabian, M., Gâteaux differentiability of convex functions and topology. Weak Asplund spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts. New York. Zbl0883.46011MR1461271
  5. Fabian, M., Overclasses of the class of Radon-Nikodým compact spaces, Methods in Banach space theory. Proceedings of the V conference on Banach spaces, Cáceres, Spain, September 13-18, 2004. Cambridge: Cambridge University Press. London Mathematical Society Lecture Note Series 337 197-214 (2006). (2006) Zbl1149.46017MR2326387
  6. Fabian, M., Heisler, M., Matoušková, E., Remarks on continuous images of Radon-Nikodým compacta, Commentat. Math. Univ. Carol. 39 (1998), 59-69. (1998) MR1622332
  7. Iancu, M., Watson, S., On continuous images of Radon-Nikodým compact spaces through the metric characterization, Topol. Proc. 26 (2001-2002), 677-693. (2001) MR2032843
  8. Namioka, I., 10.1112/S0025579300013504, Mathematika 34 (1987), 258-281. (1987) Zbl0654.46017MR0933504DOI10.1112/S0025579300013504
  9. Namioka, I., On generalizations of Radon-Nikodým compact spaces, Proceedings of the 16th Summer Conference on General Topology and its Applications (New York). Topology Proc. 26 (2001/02), 741-750. (2001) MR2032847
  10. Orihuela, J., Schachermayer, W., Valdivia, M., 10.4064/sm-98-2-157-174, Studia Math. 98 (1991), 157-174. (1991) Zbl0771.46015MR1100920DOI10.4064/sm-98-2-157-174
  11. Douwen, E. K. van, The integers and topology, Handbook of set-theoretic topology, 111-167, North-Holland, Amsterdam (1984). (1984) MR0776622

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.