Remarks on continuous images of Radon-Nikodým compacta

Marián J. Fabián; Martin Heisler; Eva Matoušková

Commentationes Mathematicae Universitatis Carolinae (1998)

  • Volume: 39, Issue: 1, page 59-69
  • ISSN: 0010-2628

Abstract

top
A family of compact spaces containing continuous images of Radon-Nikod’ym compacta is introduced and studied. A family of Banach spaces containing subspaces of Asplund generated (i.e., GSG) spaces is introduced and studied. Further, for a continuous image of a Radon-Nikod’ym compact K we prove: If K is totally disconnected, then it is Radon-Nikod’ym compact. If K is adequate, then it is even Eberlein compact.

How to cite

top

Fabián, Marián J., Heisler, Martin, and Matoušková, Eva. "Remarks on continuous images of Radon-Nikodým compacta." Commentationes Mathematicae Universitatis Carolinae 39.1 (1998): 59-69. <http://eudml.org/doc/248260>.

@article{Fabián1998,
abstract = {A family of compact spaces containing continuous images of Radon-Nikod’ym compacta is introduced and studied. A family of Banach spaces containing subspaces of Asplund generated (i.e., GSG) spaces is introduced and studied. Further, for a continuous image of a Radon-Nikod’ym compact $K$ we prove: If $K$ is totally disconnected, then it is Radon-Nikod’ym compact. If $K$ is adequate, then it is even Eberlein compact.},
author = {Fabián, Marián J., Heisler, Martin, Matoušková, Eva},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Asplund generated space; continuous image of Radon-Nikodym compact; totally disconnected compact; adequate compact; Eberlein compact; Asplund generated space; continuous image of Radon-Nikodým compact; totally disconnected compact; adequate compact; Eberlein compact},
language = {eng},
number = {1},
pages = {59-69},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remarks on continuous images of Radon-Nikodým compacta},
url = {http://eudml.org/doc/248260},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Fabián, Marián J.
AU - Heisler, Martin
AU - Matoušková, Eva
TI - Remarks on continuous images of Radon-Nikodým compacta
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 1
SP - 59
EP - 69
AB - A family of compact spaces containing continuous images of Radon-Nikod’ym compacta is introduced and studied. A family of Banach spaces containing subspaces of Asplund generated (i.e., GSG) spaces is introduced and studied. Further, for a continuous image of a Radon-Nikod’ym compact $K$ we prove: If $K$ is totally disconnected, then it is Radon-Nikod’ym compact. If $K$ is adequate, then it is even Eberlein compact.
LA - eng
KW - Asplund generated space; continuous image of Radon-Nikodym compact; totally disconnected compact; adequate compact; Eberlein compact; Asplund generated space; continuous image of Radon-Nikodým compact; totally disconnected compact; adequate compact; Eberlein compact
UR - http://eudml.org/doc/248260
ER -

References

top
  1. Argyros S., Weakly Lindelöf determined Banach spaces not containing 1 , preprint. 
  2. Argyros S., Private communication, . 
  3. Benyamini Y., Rudin M.E., Wage M., Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), 309-324. (1977) Zbl0374.46011MR0625889
  4. Dunford N., Schwartz J.T., Linear Operators, Part I, Interscience Publ., New York, 1958. Zbl0635.47001
  5. Fabian M., Gâteaux Differentiability of Convex Functions and Topology - Weak Asplund Spaces, John Wiley & Sons, Interscience, New York, 1997. Zbl0883.46011MR1461271
  6. Grothendieck A., Produits tensoriels et espaces nucleaires, Memoirs Amer. Math. Soc., No. 16, 1955. MR0075539
  7. Heisler M., Singlevaluedness of monotone operators on subspaces of GSG spaces, Comment. Math. Univ. Carolinae 37 (1996), 255-261. (1996) Zbl0849.47025MR1399000
  8. Heisler M., Some aspects of differentiability and geometry on Banach spaces, PhD. Thesis, Prague, 1996. 
  9. Namioka I., Eberlein and Radon-Nikodým compact spaces, Lecture Notes at University College, London, 1985. MR0963600
  10. Namioka I., Radon-Nikodým compact spaces and fragmentability, Mathematika 34 (1987), 258-281. (1987) Zbl0654.46017MR0933504
  11. Namioka I., Phelps R.R., Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735-750. (1975) Zbl0332.46013MR0390721
  12. Orihuela J., Schachermayer W., Valdivia M., Every Radon-Nikodým Corson compact is Eberlein compact, Studia Math. 98 (1991), 157-174. (1991) MR1100920
  13. Phelps R.R., Convex functions, monotone operators and differentiability, Lect. Notes Math., No. 1364, 2nd Edition, Springer Verlag, Berlin, 1993. Zbl0921.46039MR1238715
  14. Rosenthal H., The heredity problem for weakly compactly generated Banach spaces, Comp. Math. 28 (1974), 83-111. (1974) Zbl0298.46013MR0417762
  15. Stegall Ch., The Radon-Nikodým property in conjugate Banach spaces II, Trans. Amer. Math. Soc. 264 (1981), 507-519. (1981) Zbl0475.46016MR0603779
  16. Stegall Ch., More facts about conjugate Banach spaces with the Radon-Nikodým property II, Acta Univ. Carolinae - Math. et Phys. 32 (1991), 47-54. (1991) Zbl0773.46008MR1146766
  17. Talagrand M., Espaces de Banach faiblement K -analytiques, Annals of Math. 110 (1978), 407-438. (1978) MR0554378

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.