Remarks on continuous images of Radon-Nikodým compacta
Marián J. Fabián; Martin Heisler; Eva Matoušková
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 1, page 59-69
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topFabián, Marián J., Heisler, Martin, and Matoušková, Eva. "Remarks on continuous images of Radon-Nikodým compacta." Commentationes Mathematicae Universitatis Carolinae 39.1 (1998): 59-69. <http://eudml.org/doc/248260>.
@article{Fabián1998,
abstract = {A family of compact spaces containing continuous images of Radon-Nikod’ym compacta is introduced and studied. A family of Banach spaces containing subspaces of Asplund generated (i.e., GSG) spaces is introduced and studied. Further, for a continuous image of a Radon-Nikod’ym compact $K$ we prove: If $K$ is totally disconnected, then it is Radon-Nikod’ym compact. If $K$ is adequate, then it is even Eberlein compact.},
author = {Fabián, Marián J., Heisler, Martin, Matoušková, Eva},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Asplund generated space; continuous image of Radon-Nikodym compact; totally disconnected compact; adequate compact; Eberlein compact; Asplund generated space; continuous image of Radon-Nikodým compact; totally disconnected compact; adequate compact; Eberlein compact},
language = {eng},
number = {1},
pages = {59-69},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remarks on continuous images of Radon-Nikodým compacta},
url = {http://eudml.org/doc/248260},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Fabián, Marián J.
AU - Heisler, Martin
AU - Matoušková, Eva
TI - Remarks on continuous images of Radon-Nikodým compacta
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 1
SP - 59
EP - 69
AB - A family of compact spaces containing continuous images of Radon-Nikod’ym compacta is introduced and studied. A family of Banach spaces containing subspaces of Asplund generated (i.e., GSG) spaces is introduced and studied. Further, for a continuous image of a Radon-Nikod’ym compact $K$ we prove: If $K$ is totally disconnected, then it is Radon-Nikod’ym compact. If $K$ is adequate, then it is even Eberlein compact.
LA - eng
KW - Asplund generated space; continuous image of Radon-Nikodym compact; totally disconnected compact; adequate compact; Eberlein compact; Asplund generated space; continuous image of Radon-Nikodým compact; totally disconnected compact; adequate compact; Eberlein compact
UR - http://eudml.org/doc/248260
ER -
References
top- Argyros S., Weakly Lindelöf determined Banach spaces not containing , preprint.
- Argyros S., Private communication, .
- Benyamini Y., Rudin M.E., Wage M., Continuous images of weakly compact subsets of Banach spaces, Pacific J. Math. 70 (1977), 309-324. (1977) Zbl0374.46011MR0625889
- Dunford N., Schwartz J.T., Linear Operators, Part I, Interscience Publ., New York, 1958. Zbl0635.47001
- Fabian M., Gâteaux Differentiability of Convex Functions and Topology - Weak Asplund Spaces, John Wiley & Sons, Interscience, New York, 1997. Zbl0883.46011MR1461271
- Grothendieck A., Produits tensoriels et espaces nucleaires, Memoirs Amer. Math. Soc., No. 16, 1955. MR0075539
- Heisler M., Singlevaluedness of monotone operators on subspaces of GSG spaces, Comment. Math. Univ. Carolinae 37 (1996), 255-261. (1996) Zbl0849.47025MR1399000
- Heisler M., Some aspects of differentiability and geometry on Banach spaces, PhD. Thesis, Prague, 1996.
- Namioka I., Eberlein and Radon-Nikodým compact spaces, Lecture Notes at University College, London, 1985. MR0963600
- Namioka I., Radon-Nikodým compact spaces and fragmentability, Mathematika 34 (1987), 258-281. (1987) Zbl0654.46017MR0933504
- Namioka I., Phelps R.R., Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735-750. (1975) Zbl0332.46013MR0390721
- Orihuela J., Schachermayer W., Valdivia M., Every Radon-Nikodým Corson compact is Eberlein compact, Studia Math. 98 (1991), 157-174. (1991) MR1100920
- Phelps R.R., Convex functions, monotone operators and differentiability, Lect. Notes Math., No. 1364, 2nd Edition, Springer Verlag, Berlin, 1993. Zbl0921.46039MR1238715
- Rosenthal H., The heredity problem for weakly compactly generated Banach spaces, Comp. Math. 28 (1974), 83-111. (1974) Zbl0298.46013MR0417762
- Stegall Ch., The Radon-Nikodým property in conjugate Banach spaces II, Trans. Amer. Math. Soc. 264 (1981), 507-519. (1981) Zbl0475.46016MR0603779
- Stegall Ch., More facts about conjugate Banach spaces with the Radon-Nikodým property II, Acta Univ. Carolinae - Math. et Phys. 32 (1991), 47-54. (1991) Zbl0773.46008MR1146766
- Talagrand M., Espaces de Banach faiblement -analytiques, Annals of Math. 110 (1978), 407-438. (1978) MR0554378
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.