On the uniqueness of an entire function sharing a small entire function with some linear differential polynomial

Xiao-Min Li; Hong-Xun Yi

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 4, page 1039-1058
  • ISSN: 0011-4642

Abstract

top
We prove a theorem on the growth of nonconstant solutions of a linear differential equation. From this we obtain some uniqueness theorems concerning that a nonconstant entire function and its linear differential polynomial share a small entire function. The results in this paper improve many known results. Some examples are provided to show that the results in this paper are the best possible.

How to cite

top

Li, Xiao-Min, and Yi, Hong-Xun. "On the uniqueness of an entire function sharing a small entire function with some linear differential polynomial." Czechoslovak Mathematical Journal 59.4 (2009): 1039-1058. <http://eudml.org/doc/37976>.

@article{Li2009,
abstract = {We prove a theorem on the growth of nonconstant solutions of a linear differential equation. From this we obtain some uniqueness theorems concerning that a nonconstant entire function and its linear differential polynomial share a small entire function. The results in this paper improve many known results. Some examples are provided to show that the results in this paper are the best possible.},
author = {Li, Xiao-Min, Yi, Hong-Xun},
journal = {Czechoslovak Mathematical Journal},
keywords = {entire functions; order of growth; shared values; uniqueness theorems; entire function; order of growth; shared values; uniqueness theorem},
language = {eng},
number = {4},
pages = {1039-1058},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the uniqueness of an entire function sharing a small entire function with some linear differential polynomial},
url = {http://eudml.org/doc/37976},
volume = {59},
year = {2009},
}

TY - JOUR
AU - Li, Xiao-Min
AU - Yi, Hong-Xun
TI - On the uniqueness of an entire function sharing a small entire function with some linear differential polynomial
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 1039
EP - 1058
AB - We prove a theorem on the growth of nonconstant solutions of a linear differential equation. From this we obtain some uniqueness theorems concerning that a nonconstant entire function and its linear differential polynomial share a small entire function. The results in this paper improve many known results. Some examples are provided to show that the results in this paper are the best possible.
LA - eng
KW - entire functions; order of growth; shared values; uniqueness theorems; entire function; order of growth; shared values; uniqueness theorem
UR - http://eudml.org/doc/37976
ER -

References

top
  1. Brück, R., 10.1007/BF03322176, Results in Math. 30 (1996), 21-24. (1996) MR1402421DOI10.1007/BF03322176
  2. Chen, Z. X., Yang, C. C., 10.2996/kmj/1138044047, Kodai Math J. 22 (1999), 273-285. (1999) MR1700597DOI10.2996/kmj/1138044047
  3. Chen, Z. X., The growth of solutions of f ' ' + e - z f ' + Q ( z ) f = 0 , Science in China (A) 31 (2001), 775-784. (2001) MR1903625
  4. Chang, J. M., Fang, M. L., 10.1080/02781070410001732205, Complex Variables Theory Appl. 49 (2004), 871-895. (2004) Zbl1069.30049MR2101212DOI10.1080/02781070410001732205
  5. Gundersen, G. G., Yang, L. Z., 10.1006/jmaa.1998.5959, J. Math. Anal. Appl. 223 (1998), 88-95. (1998) Zbl0911.30022MR1627356DOI10.1006/jmaa.1998.5959
  6. Hayman, W. K., Meromorphic Functions, The Clarendon Press Oxford (1964). (1964) Zbl0115.06203MR0164038
  7. He, Y. Z., Xiao, X. Z., Algebroid Functions and Ordinary Differential Equations, Science Press Beijing (1988), Chinese. (1988) 
  8. Jank, G., Volkmann, L., Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Birkhäuser Basel-Boston (1985). (1985) Zbl0682.30001MR0820202
  9. Laine, I., Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter Berlin (1993). (1993) MR1207139
  10. Ngoan, V., Ostrovskij, I. V., The logarithmic derivative of a meromorphic function. (Russian), Dokl. Akad. Nauk Arm. SSR 41 (1965), 272-277. (1965) MR0192057
  11. Rubel, L., Yang, C. C., Values shared by an entire function and its derivative, in``Complex Analysis, Kentucky 1976'' (Proc. Conf.), Lecture Notes in Mathematics, Vol. 599, pp. 101-103, Springer-Verlag, Berlin, 1977. (1977) Zbl0362.30026MR0460640
  12. Valiron, G., Lectures on the General Theory of Integral Functions, Edouarard Privat Toulouse (1923) JFM 50.0254.01. 
  13. Wang, J. P., 10.2996/kmj/1093351321, Kodai Math J. 27 (2004), 144-151. (2004) Zbl1067.30067MR2069765DOI10.2996/kmj/1093351321
  14. Yang, L., Value Distribution Theory, Springer-Verlag Berlin Heidelberg (1993). (1993) Zbl0790.30018MR1301781
  15. Yang, C. C., Yi, H. X., Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers Dordrecht/Boston/London (2003). (2003) Zbl1070.30011MR2105668
  16. Yang, L. Z., 10.2996/kmj/1138044097, Kodai Math J. 22 (1999), 458-464. (1999) Zbl1004.30021MR1727305DOI10.2996/kmj/1138044097
  17. Chuang, C. T., Sur la comparaison de la croissance d'une fonction méromorphe et celle de sa dérivée, Bull. Sci. Math. 75 (1951), 171-190. (1951) MR0045822

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.