Abstract Riemann integrability and measurability

E. de Amo; R. del Campo; M. Díaz Carrillo

Czechoslovak Mathematical Journal (2009)

  • Volume: 59, Issue: 4, page 1123-1139
  • ISSN: 0011-4642

Abstract

top
We prove that the spectral sets of any positive abstract Riemann integrable function are measurable but (at most) a countable amount of them. In addition, the integral of such a function can be computed as an improper classical Riemann integral of the measures of its spectral sets under some weak continuity conditions which in fact characterize the integral representation.

How to cite

top

de Amo, E., del Campo, R., and Carrillo, M. Díaz. "Abstract Riemann integrability and measurability." Czechoslovak Mathematical Journal 59.4 (2009): 1123-1139. <http://eudml.org/doc/37983>.

@article{deAmo2009,
abstract = {We prove that the spectral sets of any positive abstract Riemann integrable function are measurable but (at most) a countable amount of them. In addition, the integral of such a function can be computed as an improper classical Riemann integral of the measures of its spectral sets under some weak continuity conditions which in fact characterize the integral representation.},
author = {de Amo, E., del Campo, R., Carrillo, M. Díaz},
journal = {Czechoslovak Mathematical Journal},
keywords = {finitely additive integration; localized convergence; integral representation; weak continuity conditions; horizontal integration; finitely additive integration; localized convergence; integral representation; weak continuity condition; horizontal integration},
language = {eng},
number = {4},
pages = {1123-1139},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Abstract Riemann integrability and measurability},
url = {http://eudml.org/doc/37983},
volume = {59},
year = {2009},
}

TY - JOUR
AU - de Amo, E.
AU - del Campo, R.
AU - Carrillo, M. Díaz
TI - Abstract Riemann integrability and measurability
JO - Czechoslovak Mathematical Journal
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 4
SP - 1123
EP - 1139
AB - We prove that the spectral sets of any positive abstract Riemann integrable function are measurable but (at most) a countable amount of them. In addition, the integral of such a function can be computed as an improper classical Riemann integral of the measures of its spectral sets under some weak continuity conditions which in fact characterize the integral representation.
LA - eng
KW - finitely additive integration; localized convergence; integral representation; weak continuity conditions; horizontal integration; finitely additive integration; localized convergence; integral representation; weak continuity condition; horizontal integration
UR - http://eudml.org/doc/37983
ER -

References

top
  1. Amo, E. de, Campo, R. del, Carrillo, M. Díaz, 10.1007/s10587-007-0076-2, Czech. Math. J. 57 (2007), 793-807. (2007) MR2356281DOI10.1007/s10587-007-0076-2
  2. Amo, E. de, Carrillo, M. Díaz, 10.1007/BF02874940, Rend. Circ. Mat. Palermo 54 (2005), 329-342. (2005) MR2210936DOI10.1007/BF02874940
  3. Anger, B., Portenier, C., Radon Integrals, Progress in Math. Vol. 103, Birkhäuser, Boston (1992). (1992) Zbl0766.28003MR1138722
  4. Aumann, G., 10.1007/BF01900560, Arch. Math. 3 (1952), 441-450. (1952) Zbl0048.03703MR0054693DOI10.1007/BF01900560
  5. Guerrero, P. Bobillo, Carrillo, M. Díaz, Fonctions fortement-mesurables et mesurables par rapport a un systeme de Loomis, Bull. Soc. Roy. Sci. Ličge 55 (1987), 467-471. (1987) MR0859793
  6. Burrill, C. W., Measure, Integration and Probability, McGraw-Hill (1972). (1972) Zbl0248.28001MR0457657
  7. Choquet, G., 10.5802/aif.53, Ann. Inst. Fourier, Grenoble 5 (1953/54), 131-295. (1953) MR0080760DOI10.5802/aif.53
  8. Daniell, P. J., 10.2307/1967495, Ann. of Math. 19 (1917/18), 279-294 JFM 46.0395.01. (1917) DOI10.2307/1967495
  9. Denneberg, D., Non-Additive Measure and Integral, Kluwer (1994). (1994) Zbl0826.28002MR1320048
  10. Carrillo, M. Díaz, Günzler, H., 10.1017/S0004972700016804, Bull. Austral. Math. Soc. 53 (1996), 135-142. (1996) MR1371921DOI10.1017/S0004972700016804
  11. Carrillo, M. Díaz, Günzler, H., Daniell-Loomis integrals, Rocky Mount. J. Math. 27 (1997), 1075-1087. (1997) MR1627666
  12. Carrillo, M. Díaz, Günzler, H., 10.1017/S0004972700015872, Bull. Austral. Math. Soc. 48 (1993), 411-426. (1993) MR1248045DOI10.1017/S0004972700015872
  13. Carrillo, M. Díaz, Rivas, P. Muñoz, Finitely additive integration: integral extension with local-convergence, Ann. Sci. Math. Québec 17 (1993), 145-154. (1993) MR1259371
  14. Carrillo, M. Díaz, Rivas, P. Muñoz, Positive linear functionals and improper integration, Ann. Sci. Math. Québec 18 (1994), 149-156. (1994) MR1311751
  15. Dunford, N., Schwartz, J. T., Linear Operartors, part I, General Theory, Interscience, New-York (1957). (1957) MR1009162
  16. Frink, O., 10.2307/1968175, Ann. of Math. 34 (1933), 518-526. (1933) Zbl0007.15501MR1503121DOI10.2307/1968175
  17. Greco, G., Sulla reppresentazione di funzionali mediante integrali, Rend. Sem. Mat. Padova 66 (1982), 21-42. (1982) MR0664569
  18. Günzler, H., Integration, Bibliogr. Institut, Mannheim (1985). (1985) MR0802205
  19. Günzler, H., 10.1007/BF02924845, Rend. Sem. Mat. Fis. Milano 43 (1973), 167-176. (1973) MR0354987DOI10.1007/BF02924845
  20. Kindler, J., 10.1016/0022-247X(86)90175-7, Journ. Math. Analysis Appl. 120 (1986), 533-564. (1986) MR0864770DOI10.1016/0022-247X(86)90175-7
  21. König, H., Measure and Integration, An advanced course in basic procedures and applications. Springer (1997). (1997) MR1633615
  22. Loomis, L. H., 10.2307/2372407, Amer. J. Math. 76 (1954), 168-182. (1954) Zbl0055.10101MR0060145DOI10.2307/2372407
  23. Luxemburg, W. A. J., 10.1007/978-3-642-58199-1_6, Stud. Econ., Theory 2 (1991), 109-150. (1991) Zbl0771.28004MR1307422DOI10.1007/978-3-642-58199-1_6
  24. Maharam, D., 10.1016/0022-247X(88)90373-3, J. Math. Anal. and Appl. 133 (1988), 163-194. (1988) Zbl0667.28001MR0949326DOI10.1016/0022-247X(88)90373-3
  25. Pfeffer, W. F., Integrals and Measures, Dekker, New-York (1977). (1977) Zbl0362.28004MR0460580
  26. Ridder, J., Over de Integraldefinities van Riemann en Lebesgue, Christiann Huygens 4 (1925/26), 246-250 JFM 51.0200.05 and correction, ibid. (1927), 205 JFM 53.0208.03. (1925) 
  27. Schäfke, F. W., Integrationstheorie I, J. Reine Angew. Math. 244 (1970), 154-176. (1970) MR0271300
  28. Schäfke, F. W., Lokale Integralnormen and verallgemeinerte uneigentlich Riemann-Stiltjes-Integrals, J. Reine Angew. Math. 289 (1977), 118-134. (1977) MR0453968
  29. Topsøe, F., On constructions of measures, Proceedings of the Conference on Topology and Measure I, Zinnowitz, 1974, Part 2, 343-381, Ernst-Moritz-Arndt Univ., Greifswald, 1978. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.