Lambert multipliers between spaces
M. R. Jabbarzadeh; S. Khalil Sarbaz
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 1, page 31-43
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJabbarzadeh, M. R., and Sarbaz, S. Khalil. "Lambert multipliers between $L^p$ spaces." Czechoslovak Mathematical Journal 60.1 (2010): 31-43. <http://eudml.org/doc/37986>.
@article{Jabbarzadeh2010,
abstract = {In this paper Lambert multipliers acting between $L^p$ spaces are characterized by using some properties of conditional expectation operator. Also, Fredholmness of corresponding bounded operators is investigated.},
author = {Jabbarzadeh, M. R., Sarbaz, S. Khalil},
journal = {Czechoslovak Mathematical Journal},
keywords = {conditional expectation; multipliers; multiplication operators; Fredholm operator; conditional expectation; multiplier; multiplication operator; Fredholm operator},
language = {eng},
number = {1},
pages = {31-43},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Lambert multipliers between $L^p$ spaces},
url = {http://eudml.org/doc/37986},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Jabbarzadeh, M. R.
AU - Sarbaz, S. Khalil
TI - Lambert multipliers between $L^p$ spaces
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 31
EP - 43
AB - In this paper Lambert multipliers acting between $L^p$ spaces are characterized by using some properties of conditional expectation operator. Also, Fredholmness of corresponding bounded operators is investigated.
LA - eng
KW - conditional expectation; multipliers; multiplication operators; Fredholm operator; conditional expectation; multiplier; multiplication operator; Fredholm operator
UR - http://eudml.org/doc/37986
ER -
References
top- Campbell, J., Jamison, J., 10.1017/S0017089500009095, Glasg. Math. J. 32 (1990), 87-94. (1990) Zbl0712.47025MR1045089DOI10.1017/S0017089500009095
- Conway, J. B., A course in Functional Analysis, 2nd ed, Springer-Verlag New York (1990). (1990) Zbl0706.46003MR1070713
- Pagter, B. de, Ricker, W. J., Bicommutants of algebras of multiplication operators, Proc. London Math. Soc. 72 (1996), 458-480. (1996) Zbl0910.47037MR1367086
- Herron, J., Weighted conditional expectation operators on spaces, UNC Charlotte Doctoral Dissertation ().
- Kantorovitz, S., Introduction to Modern Analysis, Oxford University Press Oxford (2003). (2003) Zbl1014.46001MR1977370
- Lambert, A., Lucas, T. G., Nagata's principle of idealization in relation to module homomorphisms and conditional expectations, Kyungpook Math. J. 40 (2000), 327-337. (2000) Zbl1042.13006MR1803109
- Lambert, A., multipliers and nested sigma-algebras, Oper. Theory Adv. Appl. 104 (1998), 147-153. (1998) MR1639653
- Lambert, A., Weinstock, B. M., 10.1307/mmj/1029004757, Mich. Math. J. 40 (1993), 359-376. (1993) Zbl0820.46056MR1226836DOI10.1307/mmj/1029004757
- Lambert, A., 10.1112/blms/18.4.395, Bull. London Math. Soc. 18 (1986), 395-400. (1986) Zbl0624.47014MR0838810DOI10.1112/blms/18.4.395
- Rao, M. M., Conditional Measures and Applications, Marcel Dekker New York (1993). (1993) Zbl0815.60001MR1234936
- Takagi, H., 10.1007/BF01358956, Integral Equations Oper. Theory 16 (1993), 267-276. (1993) Zbl0783.47048MR1205002DOI10.1007/BF01358956
- Takagi, H., Yokouchi, K., 10.1090/conm/232/03408, Contemp. Math. 232 (1999), 321-338. (1999) MR1678344DOI10.1090/conm/232/03408
- Zaanen, A. C., Integration, 2nd ed, North-Holland Amsterdam (1967). (1967) MR0222234
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.