Composition-diamond lemma for modules

Yuqun Chen; Yongshan Chen; Chanyan Zhong

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 1, page 59-76
  • ISSN: 0011-4642

Abstract

top
We investigate the relationship between the Gröbner-Shirshov bases in free associative algebras, free left modules and “double-free” left modules (that is, free modules over a free algebra). We first give Chibrikov’s Composition-Diamond lemma for modules and then we show that Kang-Lee’s Composition-Diamond lemma follows from it. We give the Gröbner-Shirshov bases for the following modules: the highest weight module over a Lie algebra s l 2 , the Verma module over a Kac-Moody algebra, the Verma module over the Lie algebra of coefficients of a free conformal algebra, and a universal enveloping module for a Sabinin algebra. As applications, we also obtain linear bases for the above modules.

How to cite

top

Chen, Yuqun, Chen, Yongshan, and Zhong, Chanyan. "Composition-diamond lemma for modules." Czechoslovak Mathematical Journal 60.1 (2010): 59-76. <http://eudml.org/doc/37988>.

@article{Chen2010,
abstract = {We investigate the relationship between the Gröbner-Shirshov bases in free associative algebras, free left modules and “double-free” left modules (that is, free modules over a free algebra). We first give Chibrikov’s Composition-Diamond lemma for modules and then we show that Kang-Lee’s Composition-Diamond lemma follows from it. We give the Gröbner-Shirshov bases for the following modules: the highest weight module over a Lie algebra $sl_2$, the Verma module over a Kac-Moody algebra, the Verma module over the Lie algebra of coefficients of a free conformal algebra, and a universal enveloping module for a Sabinin algebra. As applications, we also obtain linear bases for the above modules.},
author = {Chen, Yuqun, Chen, Yongshan, Zhong, Chanyan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Gröbner-Shirshov basis; module; Lie algebra; Kac-Moody algebra; conformal algebra; Sabinin algebra; Gröbner-Shirshov bases; free associative algebras; Lie algebras; Kac-Moody algebras; conformal algebras; Sabinin algebras; free left modules},
language = {eng},
number = {1},
pages = {59-76},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Composition-diamond lemma for modules},
url = {http://eudml.org/doc/37988},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Chen, Yuqun
AU - Chen, Yongshan
AU - Zhong, Chanyan
TI - Composition-diamond lemma for modules
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 59
EP - 76
AB - We investigate the relationship between the Gröbner-Shirshov bases in free associative algebras, free left modules and “double-free” left modules (that is, free modules over a free algebra). We first give Chibrikov’s Composition-Diamond lemma for modules and then we show that Kang-Lee’s Composition-Diamond lemma follows from it. We give the Gröbner-Shirshov bases for the following modules: the highest weight module over a Lie algebra $sl_2$, the Verma module over a Kac-Moody algebra, the Verma module over the Lie algebra of coefficients of a free conformal algebra, and a universal enveloping module for a Sabinin algebra. As applications, we also obtain linear bases for the above modules.
LA - eng
KW - Gröbner-Shirshov basis; module; Lie algebra; Kac-Moody algebra; conformal algebra; Sabinin algebra; Gröbner-Shirshov bases; free associative algebras; Lie algebras; Kac-Moody algebras; conformal algebras; Sabinin algebras; free left modules
UR - http://eudml.org/doc/37988
ER -

References

top
  1. Bokut, L. A., Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras, Izv. Akad. Nauk. SSSR Ser. Mat. 36 (1972), 1173-1219. (1972) MR0330250
  2. Bokut, L. A., Imbeddings into simple associative algebras, Algebra i Logika. 15 (1976), 117-142. (1976) MR0506423
  3. Bokut, L. A., Chen, Yuqun, Gröbner-Shirshov bases for Lie algebras: after A. I. Shirshov, Southeast Asian Bull. Math. 31 (2007), 1057-1076. (2007) Zbl1150.17008MR2386984
  4. Bokut, L. A., Fong, Y., Ke, W.-F., 10.1090/conm/264/04211, Contemporary Mathematics N264 (2000), 63-91. (2000) MR1800688DOI10.1090/conm/264/04211
  5. Bokut, L. A., Klein, A. A., 10.1142/S0218196796000222, Internat. J. Algebra Comput. 6 (1996), 389-400, 401-412. (1996) MR1414346DOI10.1142/S0218196796000222
  6. Bokut, L. A., Klein, A. A., Gröbner-Shirshov bases for exceptional Lie algebras. I, Ring Theory. Selected Papers from the Conference Held in Miskolc, July 15-20, 1996, Amsterdam (1998) 51-57. MR1653694
  7. Bokut, L. A., Klein, A. A., Gröbner-Shirshov bases for exceptional Lie algebras E 6 , E 7 , and E 8 , Algebras and Combinatorics, Springer-Verlag, Singapore (1999), 37-46. (1999) 
  8. Bokut, L. A., Malcolson, P., 10.1007/BF02785535, Israel J. Math. 96 (1996), 97-113. (1996) MR1432728DOI10.1007/BF02785535
  9. Bokut, L. A., Malcolson, P., Gröbner-Shirshov bases for relations of a Lie algebra and its enveloping algebra, Algebras and Combinatorics, Springer-Verlag, Singapore (1999), 47-54. (1999) MR1733167
  10. Bokut, L. A., Kang, S.-J., Lee, K.-H., Malcolmson, P., 10.1006/jabr.1998.7810, J. Algebra. 217 (1999), 461-495. (1999) MR1700511DOI10.1006/jabr.1998.7810
  11. Chibrikov, E. S., On free Lie conformal algebras, Vestnik Novosibirsk State University 4 (2004), 65-83. (2004) 
  12. Cohn, P. M., Free Rings and Their Relations, Academic Press, second edition (1985). (1985) Zbl0659.16001MR0800091
  13. Humphreys, James E., Introduction to Lie Algebras and Representation Theory, Springer-Verlag (2000), 1970. Zbl0447.17002MR0499562
  14. Kac, V.-G., Infinite-Dimensional Lie Algebras, Cambridge University Press, Cambridge, third edition (1990). (1990) Zbl0716.17022
  15. Kac, V.-G., Vertex Algebra for Beginners, University lecture series., 10, AMS, Providence, RI (1997). (1997) MR1417941
  16. Kang, S.-J., Lee, K.-H., Gröbner-Shirshov bases for representation theory, J. Korean Math. Soc. 37 (2000), 55-72. (2000) Zbl0979.16010MR1749085
  17. Kang, S.-J., Lee, K.-H., 10.1006/jabr.2000.8381, J. Algebra 232 (2000), 1-20. (2000) Zbl1023.17001MR1783910DOI10.1006/jabr.2000.8381
  18. Kang, S.-J., Lee, I.-S., Lee, K.-H., Oh, H., 10.1016/S0021-8693(02)00071-6, J. Algebra 252 (2002), 258-292. (2002) Zbl1038.20005MR1925138DOI10.1016/S0021-8693(02)00071-6
  19. Kang, S.-J., Lee, I.-S., Lee, K.-H., Oh, H., Representations of Ariki-Koike algebras and Gröbner-Shirshov bases, Proc. London Math. Soc. 89 (2004), 54-70. (2004) Zbl1065.20008MR2063659
  20. Lalonde, P., Ram, A., 10.1090/S0002-9947-1995-1273505-4, Trans. Amer. Math. Soc. 347 (1995), 1821-1830. (1995) Zbl0833.17003MR1273505DOI10.1090/S0002-9947-1995-1273505-4
  21. Perez-Izquierdo, J. M., 10.1016/j.aim.2006.04.001, Advances in Mathematics 208 (2007), 834-876. (2007) Zbl1186.17003MR2304338DOI10.1016/j.aim.2006.04.001
  22. Poroshenko, E. N., 10.1081/AGB-120003979, Commun. Algebra. 30 (2002), 2617-2637. (2002) Zbl1007.17017MR1908229DOI10.1081/AGB-120003979
  23. Poroshenko, E. N., Gröbner-Shirshov bases for the Kac-Moody algebras of the type C n ( 1 ) and D n ( 1 ) , Vestn. Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. 2 (2002), 58-70. (2002) MR2058346
  24. Poroshenko, E. N., Gröbner-Shirshov bases for the Kac-Moody algebras of the type B n ( 1 ) , Int. J. Math. Game Theory Algebra. 13 (2003), 117-128. (2003) MR2058346
  25. Roitman, M., 10.1006/jabr.1998.7834, J. Algebra. 217 (1999), 496-527. (1999) MR1700512DOI10.1006/jabr.1998.7834
  26. Shirshov, A. I., Some algorithmic problem for Lie algebras, Sibirsk. Mat. Z. 3 (1962), 292-296 Russian; English translation in SIGSAM Bull. 33 (1999), 3-6. (1999) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.