Composition-diamond lemma for modules
Yuqun Chen; Yongshan Chen; Chanyan Zhong
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 1, page 59-76
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Yuqun, Chen, Yongshan, and Zhong, Chanyan. "Composition-diamond lemma for modules." Czechoslovak Mathematical Journal 60.1 (2010): 59-76. <http://eudml.org/doc/37988>.
@article{Chen2010,
abstract = {We investigate the relationship between the Gröbner-Shirshov bases in free associative algebras, free left modules and “double-free” left modules (that is, free modules over a free algebra). We first give Chibrikov’s Composition-Diamond lemma for modules and then we show that Kang-Lee’s Composition-Diamond lemma follows from it. We give the Gröbner-Shirshov bases for the following modules: the highest weight module over a Lie algebra $sl_2$, the Verma module over a Kac-Moody algebra, the Verma module over the Lie algebra of coefficients of a free conformal algebra, and a universal enveloping module for a Sabinin algebra. As applications, we also obtain linear bases for the above modules.},
author = {Chen, Yuqun, Chen, Yongshan, Zhong, Chanyan},
journal = {Czechoslovak Mathematical Journal},
keywords = {Gröbner-Shirshov basis; module; Lie algebra; Kac-Moody algebra; conformal algebra; Sabinin algebra; Gröbner-Shirshov bases; free associative algebras; Lie algebras; Kac-Moody algebras; conformal algebras; Sabinin algebras; free left modules},
language = {eng},
number = {1},
pages = {59-76},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Composition-diamond lemma for modules},
url = {http://eudml.org/doc/37988},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Chen, Yuqun
AU - Chen, Yongshan
AU - Zhong, Chanyan
TI - Composition-diamond lemma for modules
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 59
EP - 76
AB - We investigate the relationship between the Gröbner-Shirshov bases in free associative algebras, free left modules and “double-free” left modules (that is, free modules over a free algebra). We first give Chibrikov’s Composition-Diamond lemma for modules and then we show that Kang-Lee’s Composition-Diamond lemma follows from it. We give the Gröbner-Shirshov bases for the following modules: the highest weight module over a Lie algebra $sl_2$, the Verma module over a Kac-Moody algebra, the Verma module over the Lie algebra of coefficients of a free conformal algebra, and a universal enveloping module for a Sabinin algebra. As applications, we also obtain linear bases for the above modules.
LA - eng
KW - Gröbner-Shirshov basis; module; Lie algebra; Kac-Moody algebra; conformal algebra; Sabinin algebra; Gröbner-Shirshov bases; free associative algebras; Lie algebras; Kac-Moody algebras; conformal algebras; Sabinin algebras; free left modules
UR - http://eudml.org/doc/37988
ER -
References
top- Bokut, L. A., Unsolvability of the word problem, and subalgebras of finitely presented Lie algebras, Izv. Akad. Nauk. SSSR Ser. Mat. 36 (1972), 1173-1219. (1972) MR0330250
- Bokut, L. A., Imbeddings into simple associative algebras, Algebra i Logika. 15 (1976), 117-142. (1976) MR0506423
- Bokut, L. A., Chen, Yuqun, Gröbner-Shirshov bases for Lie algebras: after A. I. Shirshov, Southeast Asian Bull. Math. 31 (2007), 1057-1076. (2007) Zbl1150.17008MR2386984
- Bokut, L. A., Fong, Y., Ke, W.-F., 10.1090/conm/264/04211, Contemporary Mathematics N264 (2000), 63-91. (2000) MR1800688DOI10.1090/conm/264/04211
- Bokut, L. A., Klein, A. A., 10.1142/S0218196796000222, Internat. J. Algebra Comput. 6 (1996), 389-400, 401-412. (1996) MR1414346DOI10.1142/S0218196796000222
- Bokut, L. A., Klein, A. A., Gröbner-Shirshov bases for exceptional Lie algebras. I, Ring Theory. Selected Papers from the Conference Held in Miskolc, July 15-20, 1996, Amsterdam (1998) 51-57. MR1653694
- Bokut, L. A., Klein, A. A., Gröbner-Shirshov bases for exceptional Lie algebras , , and , Algebras and Combinatorics, Springer-Verlag, Singapore (1999), 37-46. (1999)
- Bokut, L. A., Malcolson, P., 10.1007/BF02785535, Israel J. Math. 96 (1996), 97-113. (1996) MR1432728DOI10.1007/BF02785535
- Bokut, L. A., Malcolson, P., Gröbner-Shirshov bases for relations of a Lie algebra and its enveloping algebra, Algebras and Combinatorics, Springer-Verlag, Singapore (1999), 47-54. (1999) MR1733167
- Bokut, L. A., Kang, S.-J., Lee, K.-H., Malcolmson, P., 10.1006/jabr.1998.7810, J. Algebra. 217 (1999), 461-495. (1999) MR1700511DOI10.1006/jabr.1998.7810
- Chibrikov, E. S., On free Lie conformal algebras, Vestnik Novosibirsk State University 4 (2004), 65-83. (2004)
- Cohn, P. M., Free Rings and Their Relations, Academic Press, second edition (1985). (1985) Zbl0659.16001MR0800091
- Humphreys, James E., Introduction to Lie Algebras and Representation Theory, Springer-Verlag (2000), 1970. Zbl0447.17002MR0499562
- Kac, V.-G., Infinite-Dimensional Lie Algebras, Cambridge University Press, Cambridge, third edition (1990). (1990) Zbl0716.17022
- Kac, V.-G., Vertex Algebra for Beginners, University lecture series., 10, AMS, Providence, RI (1997). (1997) MR1417941
- Kang, S.-J., Lee, K.-H., Gröbner-Shirshov bases for representation theory, J. Korean Math. Soc. 37 (2000), 55-72. (2000) Zbl0979.16010MR1749085
- Kang, S.-J., Lee, K.-H., 10.1006/jabr.2000.8381, J. Algebra 232 (2000), 1-20. (2000) Zbl1023.17001MR1783910DOI10.1006/jabr.2000.8381
- Kang, S.-J., Lee, I.-S., Lee, K.-H., Oh, H., 10.1016/S0021-8693(02)00071-6, J. Algebra 252 (2002), 258-292. (2002) Zbl1038.20005MR1925138DOI10.1016/S0021-8693(02)00071-6
- Kang, S.-J., Lee, I.-S., Lee, K.-H., Oh, H., Representations of Ariki-Koike algebras and Gröbner-Shirshov bases, Proc. London Math. Soc. 89 (2004), 54-70. (2004) Zbl1065.20008MR2063659
- Lalonde, P., Ram, A., 10.1090/S0002-9947-1995-1273505-4, Trans. Amer. Math. Soc. 347 (1995), 1821-1830. (1995) Zbl0833.17003MR1273505DOI10.1090/S0002-9947-1995-1273505-4
- Perez-Izquierdo, J. M., 10.1016/j.aim.2006.04.001, Advances in Mathematics 208 (2007), 834-876. (2007) Zbl1186.17003MR2304338DOI10.1016/j.aim.2006.04.001
- Poroshenko, E. N., 10.1081/AGB-120003979, Commun. Algebra. 30 (2002), 2617-2637. (2002) Zbl1007.17017MR1908229DOI10.1081/AGB-120003979
- Poroshenko, E. N., Gröbner-Shirshov bases for the Kac-Moody algebras of the type and , Vestn. Novosib. Gos. Univ. Ser. Mat. Mekh. Inform. 2 (2002), 58-70. (2002) MR2058346
- Poroshenko, E. N., Gröbner-Shirshov bases for the Kac-Moody algebras of the type , Int. J. Math. Game Theory Algebra. 13 (2003), 117-128. (2003) MR2058346
- Roitman, M., 10.1006/jabr.1998.7834, J. Algebra. 217 (1999), 496-527. (1999) MR1700512DOI10.1006/jabr.1998.7834
- Shirshov, A. I., Some algorithmic problem for Lie algebras, Sibirsk. Mat. Z. 3 (1962), 292-296 Russian; English translation in SIGSAM Bull. 33 (1999), 3-6. (1999)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.