Schur multiplier characterization of a class of infinite matrices
A. Marcoci; L. Marcoci; L. E. Persson; N. Popa
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 1, page 183-193
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMarcoci, A., et al. "Schur multiplier characterization of a class of infinite matrices." Czechoslovak Mathematical Journal 60.1 (2010): 183-193. <http://eudml.org/doc/38000>.
@article{Marcoci2010,
abstract = {Let $B_w(\ell ^p)$ denote the space of infinite matrices $A$ for which $A(x)\in \ell ^p$ for all $x=\lbrace x_k\rbrace _\{k=1\}^\infty \in \ell ^p$ with $|x_k|\searrow 0$. We characterize the upper triangular positive matrices from $B_w(\ell ^p)$, $1<p<\infty $, by using a special kind of Schur multipliers and the G. Bennett factorization technique. Also some related results are stated and discussed.},
author = {Marcoci, A., Marcoci, L., Persson, L. E., Popa, N.},
journal = {Czechoslovak Mathematical Journal},
keywords = {infinite matrices; Schur multipliers; discrete Sawyer duality principle; Bennett factorization; Wiener algebra and Hardy type inequalities; infinite matrix; Schur multiplier; discrete Sawyer duality principle; Bennett factorization; Wiener algebra; Hardy type inequality; upper triangular positive matrices},
language = {eng},
number = {1},
pages = {183-193},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Schur multiplier characterization of a class of infinite matrices},
url = {http://eudml.org/doc/38000},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Marcoci, A.
AU - Marcoci, L.
AU - Persson, L. E.
AU - Popa, N.
TI - Schur multiplier characterization of a class of infinite matrices
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 183
EP - 193
AB - Let $B_w(\ell ^p)$ denote the space of infinite matrices $A$ for which $A(x)\in \ell ^p$ for all $x=\lbrace x_k\rbrace _{k=1}^\infty \in \ell ^p$ with $|x_k|\searrow 0$. We characterize the upper triangular positive matrices from $B_w(\ell ^p)$, $1<p<\infty $, by using a special kind of Schur multipliers and the G. Bennett factorization technique. Also some related results are stated and discussed.
LA - eng
KW - infinite matrices; Schur multipliers; discrete Sawyer duality principle; Bennett factorization; Wiener algebra and Hardy type inequalities; infinite matrix; Schur multiplier; discrete Sawyer duality principle; Bennett factorization; Wiener algebra; Hardy type inequality; upper triangular positive matrices
UR - http://eudml.org/doc/38000
ER -
References
top- Bennett, G., Factorizing the Classical Inequalities, Memoirs of the American Mathematical Society, Number 576 (1996). (1996) Zbl0857.26009MR1317938
- Bennett, G., Schur multipliers, Duke Math. J. 44 (1977), 603-639. (1977) Zbl0389.47015MR0493490
- Barza, S., Kravvaritis, D., Popa, N., 10.1155/2005/376150, J. Funct. Spaces Appl. 3 (2005), 239-249. (2005) Zbl1093.42002MR2163625DOI10.1155/2005/376150
- Badea, C., Paulsen, V., 10.1512/iumj.2001.50.2121, Indiana Univ. Math. J. 50 (2001), 1509-1522. (2001) Zbl1031.47019MR1888651DOI10.1512/iumj.2001.50.2121
- Barza, S., Persson, L. E., Popa, N., 10.1002/mana.200310100, Math. Nach. 260 (2003), 14-20. (2003) Zbl1043.15020MR2017699DOI10.1002/mana.200310100
- Barza, S., Lie, V. D., Popa, N., 10.1007/BF02384779, Ark. Mat. 43 (2005), 251-269. (2005) MR2173951DOI10.1007/BF02384779
- Carro, M. J., Soria, J., 10.1006/jfan.1993.1042, J. Funct. Anal. 112 (1993), 480-494. (1993) Zbl0784.46022MR1213148DOI10.1006/jfan.1993.1042
- Carro, M. J., Raposo, J. A., Soria, J., Recent Developments in the Theory of Lorentz Spaces and Weighted Inequalities, Memoirs of the American Mathematical Society, Number 877 (2007). (2007) Zbl1126.42005MR2308059
- Jagers, A. A., A note on Cesaro sequence spaces, Nieuw Arch. voor Wiskunde 3 (1974), 113-124. (1974) Zbl0286.46017MR0348444
- Kufner, A., Persson, L. E., Weighted Inequalities of Hardy Type, World Scientific Publishing Co., Singapore-New Jersey-London-Hong Kong (2003). (2003) Zbl1065.26018MR1982932
- Kufner, A., Maligranda, L., Persson, L. E., The Hardy Inequality, About its History and Some Related Results, Vydavatelsky Servis Publishing House, Pilsen (2007). (2007) MR2351524
- Kwapien, S., Pelczynski, A., 10.4064/sm-34-1-43-67, Studia Math. 34 (1970), 43-68. (1970) Zbl0189.43505MR0270118DOI10.4064/sm-34-1-43-67
- Marcoci, A., Marcoci, L., 10.1155/2007/949161, J. Funct. Spaces Appl. 5 (2007), 151-164. (2007) MR2319600DOI10.1155/2007/949161
- Paulsen, V., Completely Bounded Maps and Operator Algebras, Cambridge studies in advanced mathematics 78, Cambridge University Press (2002). (2002) Zbl1029.47003MR1976867
- Pommerenke, Chr., Univalent Functions, Hubert, Gottingen (1975). (1975) Zbl0298.30014MR0507768
- Sawyer, E., 10.4064/sm-96-2-145-158, Studia Math. 96 (1990), 145-158. (1990) Zbl0705.42014MR1052631DOI10.4064/sm-96-2-145-158
- Schur, J., 10.1515/crll.1911.140.1, J. Reine Angew. Math. 140 (1911), 1-28 2.0367.01. (1911) DOI10.1515/crll.1911.140.1
- Shapiro, H. S., Shields, A. L., 10.2307/2372892, Amer. J. Math. 83 (1961), 513-532. (1961) Zbl0112.29701MR0133446DOI10.2307/2372892
- Shapiro, H. S., Shields, A. L., 10.1007/BF01162379, Math. Zeit. 80 (1962), 217-229. (1962) Zbl0115.06301MR0145082DOI10.1007/BF01162379
- Styan, G. P. H., 10.1016/0024-3795(73)90023-2, Linear Algebra 6 (1973), 217-240. (1973) MR0318177DOI10.1016/0024-3795(73)90023-2
- Shields, A. L., Wallen, J. L., 10.1512/iumj.1971.20.20062, Indiana Univ. Math. J. 20 (1971), 777-799. (1971) Zbl0207.13801MR0287352DOI10.1512/iumj.1971.20.20062
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.