Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra
Deng Yin Wang; Haishan Pan; Xuansheng Wang
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 2, page 371-379
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Deng Yin, Pan, Haishan, and Wang, Xuansheng. "Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra." Czechoslovak Mathematical Journal 60.2 (2010): 371-379. <http://eudml.org/doc/38013>.
@article{Wang2010,
abstract = {Let $\mathcal \{P\}$ be an arbitrary parabolic subalgebra of a simple associative $F$-algebra. The ideals of $\mathcal \{P\}$ are determined completely; Each ideal of $\mathcal \{P\}$ is shown to be generated by one element; Every non-linear invertible map on $\mathcal \{P\}$ that preserves ideals is described in an explicit formula.},
author = {Wang, Deng Yin, Pan, Haishan, Wang, Xuansheng},
journal = {Czechoslovak Mathematical Journal},
keywords = {simple associative $F$-algebra; ideals; maps preserving ideals; simple associative -algebra; ideal; maps preserving ideal},
language = {eng},
number = {2},
pages = {371-379},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra},
url = {http://eudml.org/doc/38013},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Wang, Deng Yin
AU - Pan, Haishan
AU - Wang, Xuansheng
TI - Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 2
SP - 371
EP - 379
AB - Let $\mathcal {P}$ be an arbitrary parabolic subalgebra of a simple associative $F$-algebra. The ideals of $\mathcal {P}$ are determined completely; Each ideal of $\mathcal {P}$ is shown to be generated by one element; Every non-linear invertible map on $\mathcal {P}$ that preserves ideals is described in an explicit formula.
LA - eng
KW - simple associative $F$-algebra; ideals; maps preserving ideals; simple associative -algebra; ideal; maps preserving ideal
UR - http://eudml.org/doc/38013
ER -
References
top- Orsina, L., Papi, P, 10.1016/S0764-4442(00)00253-6, C. R. Acad. Sci, Paris 330 (2000), 651-655. (2000) Zbl0984.17003MR1763905DOI10.1016/S0764-4442(00)00253-6
- Panyushev, D., 10.1016/j.jalgebra.2003.09.007, J. Algebra 274 (2004), 822-846. (2004) Zbl1067.17005MR2043377DOI10.1016/j.jalgebra.2003.09.007
- Panyushev, D., 10.1016/j.aim.2003.08.006, Advances in Mathematics 186 (2004), 307-316. (2004) Zbl1052.17002MR2073908DOI10.1016/j.aim.2003.08.006
- Panyushev, D., Röhrle, G., 10.1006/aima.2000.1959, Advances in Mathematics 159 (2001), 229-246. (2001) MR1825058DOI10.1006/aima.2000.1959
- Cellini, P., Papi, P., 10.1016/j.aim.2003.08.011, Advances in Mathematics 187 (2004), 320-361. (2004) Zbl1112.17011MR2078340DOI10.1016/j.aim.2003.08.011
- Cellini, P., Papi, P., 10.1006/jabr.1999.8099, J. Algebra 225 (2000), 130-141. (2000) Zbl0951.17003MR1743654DOI10.1006/jabr.1999.8099
- Cellini, P., Papi, P., 10.1016/S0021-8693(02)00532-X, J. Algebra 258 (2002), 112-121. (2002) Zbl1033.17008MR1958899DOI10.1016/S0021-8693(02)00532-X
- Krattenthaler, C., Orsina, L., Papi, P., 10.1006/aama.2001.0792, Advances in Applied Mathematics 28 (2002), 478-522. (2002) MR1900005DOI10.1006/aama.2001.0792
- Righi, Céline, 10.1016/j.jalgebra.2007.11.005, J. Algebra 319 (2008), 1555-1584. (2008) MR2383058DOI10.1016/j.jalgebra.2007.11.005
- Panyushev, D., 10.1016/j.ejc.2004.10.002, European Journal of Combinatorics 27 (2006), 153-178. (2006) Zbl1091.17007MR2199771DOI10.1016/j.ejc.2004.10.002
- Radjavi, H., Šemrl, P., 10.1016/j.jalgebra.2004.06.016, J. Algebra 280 (2004), 624-634. (2004) MR2089255DOI10.1016/j.jalgebra.2004.06.016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.