Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra

Deng Yin Wang; Haishan Pan; Xuansheng Wang

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 2, page 371-379
  • ISSN: 0011-4642

Abstract

top
Let 𝒫 be an arbitrary parabolic subalgebra of a simple associative F -algebra. The ideals of 𝒫 are determined completely; Each ideal of 𝒫 is shown to be generated by one element; Every non-linear invertible map on 𝒫 that preserves ideals is described in an explicit formula.

How to cite

top

Wang, Deng Yin, Pan, Haishan, and Wang, Xuansheng. "Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra." Czechoslovak Mathematical Journal 60.2 (2010): 371-379. <http://eudml.org/doc/38013>.

@article{Wang2010,
abstract = {Let $\mathcal \{P\}$ be an arbitrary parabolic subalgebra of a simple associative $F$-algebra. The ideals of $\mathcal \{P\}$ are determined completely; Each ideal of $\mathcal \{P\}$ is shown to be generated by one element; Every non-linear invertible map on $\mathcal \{P\}$ that preserves ideals is described in an explicit formula.},
author = {Wang, Deng Yin, Pan, Haishan, Wang, Xuansheng},
journal = {Czechoslovak Mathematical Journal},
keywords = {simple associative $F$-algebra; ideals; maps preserving ideals; simple associative -algebra; ideal; maps preserving ideal},
language = {eng},
number = {2},
pages = {371-379},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra},
url = {http://eudml.org/doc/38013},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Wang, Deng Yin
AU - Pan, Haishan
AU - Wang, Xuansheng
TI - Non-linear maps preserving ideals on a parabolic subalgebra of a simple algebra
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 2
SP - 371
EP - 379
AB - Let $\mathcal {P}$ be an arbitrary parabolic subalgebra of a simple associative $F$-algebra. The ideals of $\mathcal {P}$ are determined completely; Each ideal of $\mathcal {P}$ is shown to be generated by one element; Every non-linear invertible map on $\mathcal {P}$ that preserves ideals is described in an explicit formula.
LA - eng
KW - simple associative $F$-algebra; ideals; maps preserving ideals; simple associative -algebra; ideal; maps preserving ideal
UR - http://eudml.org/doc/38013
ER -

References

top
  1. Orsina, L., Papi, P, 10.1016/S0764-4442(00)00253-6, C. R. Acad. Sci, Paris 330 (2000), 651-655. (2000) Zbl0984.17003MR1763905DOI10.1016/S0764-4442(00)00253-6
  2. Panyushev, D., 10.1016/j.jalgebra.2003.09.007, J. Algebra 274 (2004), 822-846. (2004) Zbl1067.17005MR2043377DOI10.1016/j.jalgebra.2003.09.007
  3. Panyushev, D., 10.1016/j.aim.2003.08.006, Advances in Mathematics 186 (2004), 307-316. (2004) Zbl1052.17002MR2073908DOI10.1016/j.aim.2003.08.006
  4. Panyushev, D., Röhrle, G., 10.1006/aima.2000.1959, Advances in Mathematics 159 (2001), 229-246. (2001) MR1825058DOI10.1006/aima.2000.1959
  5. Cellini, P., Papi, P., 10.1016/j.aim.2003.08.011, Advances in Mathematics 187 (2004), 320-361. (2004) Zbl1112.17011MR2078340DOI10.1016/j.aim.2003.08.011
  6. Cellini, P., Papi, P., 10.1006/jabr.1999.8099, J. Algebra 225 (2000), 130-141. (2000) Zbl0951.17003MR1743654DOI10.1006/jabr.1999.8099
  7. Cellini, P., Papi, P., 10.1016/S0021-8693(02)00532-X, J. Algebra 258 (2002), 112-121. (2002) Zbl1033.17008MR1958899DOI10.1016/S0021-8693(02)00532-X
  8. Krattenthaler, C., Orsina, L., Papi, P., 10.1006/aama.2001.0792, Advances in Applied Mathematics 28 (2002), 478-522. (2002) MR1900005DOI10.1006/aama.2001.0792
  9. Righi, Céline, 10.1016/j.jalgebra.2007.11.005, J. Algebra 319 (2008), 1555-1584. (2008) MR2383058DOI10.1016/j.jalgebra.2007.11.005
  10. Panyushev, D., 10.1016/j.ejc.2004.10.002, European Journal of Combinatorics 27 (2006), 153-178. (2006) Zbl1091.17007MR2199771DOI10.1016/j.ejc.2004.10.002
  11. Radjavi, H., Šemrl, P., 10.1016/j.jalgebra.2004.06.016, J. Algebra 280 (2004), 624-634. (2004) MR2089255DOI10.1016/j.jalgebra.2004.06.016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.