Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Derivations of the subalgebras intermediate the general linear Lie algebra and the diagonal subalgebra over commutative rings

Deng Yin WangXian Wang — 2008

Archivum Mathematicum

Let R be an arbitrary commutative ring with identity, gl ( n , R ) the general linear Lie algebra over R , d ( n , R ) the diagonal subalgebra of gl ( n , R ) . In case 2 is a unit of R , all subalgebras of gl ( n , R ) containing d ( n , R ) are determined and their derivations are given. In case 2 is not a unit partial results are given.

Triple automorphisms of simple Lie algebras

Deng Yin WangXiaoxiang Yu — 2011

Czechoslovak Mathematical Journal

An invertible linear map ϕ on a Lie algebra L is called a triple automorphism of it if ϕ ( [ x , [ y , z ] ] ) = [ ϕ ( x ) , [ ϕ ( y ) , ϕ ( z ) ] ] for x , y , z L . Let 𝔤 be a finite-dimensional simple Lie algebra of rank l defined over an algebraically closed field F of characteristic zero, 𝔭 an arbitrary parabolic subalgebra of 𝔤 . It is shown in this paper that an invertible linear map ϕ on 𝔭 is a triple automorphism if and only if either ϕ itself is an automorphism of 𝔭 or it is the composition of an automorphism of 𝔭 and an extremal map of order 2 .

The group of commutativity preserving maps on strictly upper triangular matrices

Deng Yin WangMin ZhuJianling Rou — 2014

Czechoslovak Mathematical Journal

Let 𝒩 = N n ( R ) be the algebra of all n × n strictly upper triangular matrices over a unital commutative ring R . A map ϕ on 𝒩 is called preserving commutativity in both directions if x y = y x ϕ ( x ) ϕ ( y ) = ϕ ( y ) ϕ ( x ) . In this paper, we prove that each invertible linear map on 𝒩 preserving commutativity in both directions is exactly a quasi-automorphism of 𝒩 , and a quasi-automorphism of 𝒩 can be decomposed into the product of several standard maps, which extains the main result of Y. Cao, Z. Chen and C. Huang (2002) from fields to rings.

Page 1

Download Results (CSV)