On sequential properties of Banach spaces, spaces of measures and densities
Piotr Borodulin-Nadzieja; Grzegorz Plebanek
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 2, page 381-399
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBorodulin-Nadzieja, Piotr, and Plebanek, Grzegorz. "On sequential properties of Banach spaces, spaces of measures and densities." Czechoslovak Mathematical Journal 60.2 (2010): 381-399. <http://eudml.org/doc/38014>.
@article{Borodulin2010,
abstract = {We show that a conjunction of Mazur and Gelfand-Phillips properties of a Banach space $E$ can be naturally expressed in terms of weak* continuity of seminorms on the unit ball of $E^*$. We attempt to carry out a construction of a Banach space of the form $C(K)$ which has the Mazur property but does not have the Gelfand-Phillips property. For this purpose we analyze the compact spaces on which all regular measures lie in the weak* sequential closure of atomic measures, and the set-theoretic properties of generalized densities on the natural numbers.},
author = {Borodulin-Nadzieja, Piotr, Plebanek, Grzegorz},
journal = {Czechoslovak Mathematical Journal},
keywords = {Gelfand-Phillips property; Mazur property; generalized density; Gelfand-Phillips property; Mazur property; generalized density},
language = {eng},
number = {2},
pages = {381-399},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On sequential properties of Banach spaces, spaces of measures and densities},
url = {http://eudml.org/doc/38014},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Borodulin-Nadzieja, Piotr
AU - Plebanek, Grzegorz
TI - On sequential properties of Banach spaces, spaces of measures and densities
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 2
SP - 381
EP - 399
AB - We show that a conjunction of Mazur and Gelfand-Phillips properties of a Banach space $E$ can be naturally expressed in terms of weak* continuity of seminorms on the unit ball of $E^*$. We attempt to carry out a construction of a Banach space of the form $C(K)$ which has the Mazur property but does not have the Gelfand-Phillips property. For this purpose we analyze the compact spaces on which all regular measures lie in the weak* sequential closure of atomic measures, and the set-theoretic properties of generalized densities on the natural numbers.
LA - eng
KW - Gelfand-Phillips property; Mazur property; generalized density; Gelfand-Phillips property; Mazur property; generalized density
UR - http://eudml.org/doc/38014
ER -
References
top- Balcar, B., Pelant, J., Simon, P., 10.4064/fm-110-1-11-24, Fundam. Math. 110 (1980), 11-24. (1980) Zbl0568.54004MR0600576DOI10.4064/fm-110-1-11-24
- Rao, K. P. S. Bhaskara, Rao, M. Bhaskara, Theory of Charges, Academic Press London (1983). (1983) MR0751777
- Blass, A., Combinatorial cardinal characteristics of the continuum, (to appear) as a chapter in Handbook of Set Theory. MR2768685
- Borodulin-Nadzieja, P., 10.1016/j.topol.2007.03.014, Topology Appl. 154 (2007), 3107-3124. (2007) MR2364639DOI10.1016/j.topol.2007.03.014
- Bourgain, J., Diestel, J., 10.1002/mana.19841190105, Math. Nachr. 119 (1984), 55-58. (1984) Zbl0601.47019MR0774176DOI10.1002/mana.19841190105
- Drewnowski, L., 10.1007/BF01229808, Math. Z. 193 (1986), 405-411. (1986) Zbl0629.46020MR0862887DOI10.1007/BF01229808
- Edgar, G. A., 10.1512/iumj.1979.28.28039, Indiana Univ. Math. J. 28 (1979), 559-579. (1979) Zbl0418.46034MR0542944DOI10.1512/iumj.1979.28.28039
- Farkas, B., Soukup, L., More on cardinal invariants of analytic -ideals, Preprint. MR2537837
- Freedman, W., 10.4064/cm91-2-2, Colloq. Math. 91 (2002), 167-182. (2002) Zbl1028.46020MR1898630DOI10.4064/cm91-2-2
- Howard, J., 10.35834/1995/0703116, Missouri J. Math. Sci 7 (1995), 116-118. (1995) MR1455281DOI10.35834/1995/0703116
- Hernandez-Hernandez, F., Hrusák, M., Cardinal invariants of -ideals, Preprint.
- Kalenda, O., Valdivia compact spaces in topology and Banach space theory, Extr. Math. 15 (2000), 1-85. (2000) Zbl0983.46021MR1792980
- Kalenda, O., 10.4064/sm182-1-2, Stud. Math. 182 (2007), 29-40. (2007) Zbl1139.46018MR2326490DOI10.4064/sm182-1-2
- Koppelberg, S., 10.1007/BF00353658, Order 5 (1989), 393-406. (1989) Zbl0676.06019MR1010388DOI10.1007/BF00353658
- Koppelberg, S., Counterexamples in minimally generated Boolean algebras, Acta Univ. Carol. Math. Phys. 29 (1988), 27-36. (1988) Zbl0676.06020MR0983448
- Koszmider, P., 10.1090/S0002-9947-99-02145-5, Trans. Am. Math. Soc. 351 (1999), 3073-3117. (1999) Zbl0922.03071MR1467471DOI10.1090/S0002-9947-99-02145-5
- Leung, D. H., 10.1002/mana.19901490114, Math. Nachr. 149 (1990), 177-181. (1990) Zbl0765.46007MR1124803DOI10.1002/mana.19901490114
- Leung, D. H., 10.1017/S0017089500008028, Glasg. Math. J. 33 (1991), 51-54. (1991) Zbl0745.46021MR1089953DOI10.1017/S0017089500008028
- Mazur, S., 10.4064/fm-39-1-229-238, Fundam. Math. 39 (1952), 229-238. (1952) MR0055663DOI10.4064/fm-39-1-229-238
- Mercourakis, S., 10.1007/BF01299640, Monatsh. Math. 121 (1996), 79-111. (1996) MR1375642DOI10.1007/BF01299640
- Plebanek, G., 10.1112/S0025579300006422, Mathematika 38 (1991), 42-49. (1991) MR1116683DOI10.1112/S0025579300006422
- Plebanek, G., On some properties of Banach spaces of continuous functions, Séminaire d'initiation a l'analyse 1991/92, Vol. 31 G. Choquet et al. Université Pierre et Marie Curie Paris (1994). (1994) Zbl0876.46016
- Plebanek, G., On Mazur property and realcompactness in , In: Topology, Measure and Fractals, Math. Res. Vol. 66 C. Bandt et al. Akademie Verlag (1992). (1992) Zbl0850.46019MR1226275
- Plebanek, G., 10.4064/cm-64-1-71-78, Colloq. Math. 64 (1993), 71-78. (1993) Zbl0823.28005MR1201444DOI10.4064/cm-64-1-71-78
- Plebanek, G., 10.1016/0166-8641(95)00006-3, Topology Appl. 65 (1995), 257-270 Erratum: Topology Appl. 72 (1996), 99. (1996) Zbl0869.54003MR1357868DOI10.1016/0166-8641(95)00006-3
- Sinha, D. P., Arora, K. K., On the Gelfand-Phillips property in Banach spaces with PRI, Collect. Math. 48 (1997), 347-354. (1997) Zbl0903.46015MR1475810
- Talagrand, M., Pettis integral and measure theory, Mem. Am. Math. Soc. 307 (1984). (1984) Zbl0582.46049MR0756174
- Schlumprecht, T., 10.1002/mana.19921570105, Math. Nachr. 157 (1992), 51-64. (1992) Zbl0797.46013MR1233046DOI10.1002/mana.19921570105
- Wilansky, A., 10.1155/S0161171281000021, Int. J. Math. Sci. 4 (1981), 39-53. (1981) Zbl0466.46005MR0606656DOI10.1155/S0161171281000021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.