On sequential properties of Banach spaces, spaces of measures and densities

Piotr Borodulin-Nadzieja; Grzegorz Plebanek

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 2, page 381-399
  • ISSN: 0011-4642

Abstract

top
We show that a conjunction of Mazur and Gelfand-Phillips properties of a Banach space E can be naturally expressed in terms of weak* continuity of seminorms on the unit ball of E * . We attempt to carry out a construction of a Banach space of the form C ( K ) which has the Mazur property but does not have the Gelfand-Phillips property. For this purpose we analyze the compact spaces on which all regular measures lie in the weak* sequential closure of atomic measures, and the set-theoretic properties of generalized densities on the natural numbers.

How to cite

top

Borodulin-Nadzieja, Piotr, and Plebanek, Grzegorz. "On sequential properties of Banach spaces, spaces of measures and densities." Czechoslovak Mathematical Journal 60.2 (2010): 381-399. <http://eudml.org/doc/38014>.

@article{Borodulin2010,
abstract = {We show that a conjunction of Mazur and Gelfand-Phillips properties of a Banach space $E$ can be naturally expressed in terms of weak* continuity of seminorms on the unit ball of $E^*$. We attempt to carry out a construction of a Banach space of the form $C(K)$ which has the Mazur property but does not have the Gelfand-Phillips property. For this purpose we analyze the compact spaces on which all regular measures lie in the weak* sequential closure of atomic measures, and the set-theoretic properties of generalized densities on the natural numbers.},
author = {Borodulin-Nadzieja, Piotr, Plebanek, Grzegorz},
journal = {Czechoslovak Mathematical Journal},
keywords = {Gelfand-Phillips property; Mazur property; generalized density; Gelfand-Phillips property; Mazur property; generalized density},
language = {eng},
number = {2},
pages = {381-399},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On sequential properties of Banach spaces, spaces of measures and densities},
url = {http://eudml.org/doc/38014},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Borodulin-Nadzieja, Piotr
AU - Plebanek, Grzegorz
TI - On sequential properties of Banach spaces, spaces of measures and densities
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 2
SP - 381
EP - 399
AB - We show that a conjunction of Mazur and Gelfand-Phillips properties of a Banach space $E$ can be naturally expressed in terms of weak* continuity of seminorms on the unit ball of $E^*$. We attempt to carry out a construction of a Banach space of the form $C(K)$ which has the Mazur property but does not have the Gelfand-Phillips property. For this purpose we analyze the compact spaces on which all regular measures lie in the weak* sequential closure of atomic measures, and the set-theoretic properties of generalized densities on the natural numbers.
LA - eng
KW - Gelfand-Phillips property; Mazur property; generalized density; Gelfand-Phillips property; Mazur property; generalized density
UR - http://eudml.org/doc/38014
ER -

References

top
  1. Balcar, B., Pelant, J., Simon, P., 10.4064/fm-110-1-11-24, Fundam. Math. 110 (1980), 11-24. (1980) Zbl0568.54004MR0600576DOI10.4064/fm-110-1-11-24
  2. Rao, K. P. S. Bhaskara, Rao, M. Bhaskara, Theory of Charges, Academic Press London (1983). (1983) MR0751777
  3. Blass, A., Combinatorial cardinal characteristics of the continuum, (to appear) as a chapter in Handbook of Set Theory. MR2768685
  4. Borodulin-Nadzieja, P., 10.1016/j.topol.2007.03.014, Topology Appl. 154 (2007), 3107-3124. (2007) MR2364639DOI10.1016/j.topol.2007.03.014
  5. Bourgain, J., Diestel, J., 10.1002/mana.19841190105, Math. Nachr. 119 (1984), 55-58. (1984) Zbl0601.47019MR0774176DOI10.1002/mana.19841190105
  6. Drewnowski, L., 10.1007/BF01229808, Math. Z. 193 (1986), 405-411. (1986) Zbl0629.46020MR0862887DOI10.1007/BF01229808
  7. Edgar, G. A., 10.1512/iumj.1979.28.28039, Indiana Univ. Math. J. 28 (1979), 559-579. (1979) Zbl0418.46034MR0542944DOI10.1512/iumj.1979.28.28039
  8. Farkas, B., Soukup, L., More on cardinal invariants of analytic P -ideals, Preprint. MR2537837
  9. Freedman, W., 10.4064/cm91-2-2, Colloq. Math. 91 (2002), 167-182. (2002) Zbl1028.46020MR1898630DOI10.4064/cm91-2-2
  10. Howard, J., 10.35834/1995/0703116, Missouri J. Math. Sci 7 (1995), 116-118. (1995) MR1455281DOI10.35834/1995/0703116
  11. Hernandez-Hernandez, F., Hrusák, M., Cardinal invariants of P -ideals, Preprint. 
  12. Kalenda, O., Valdivia compact spaces in topology and Banach space theory, Extr. Math. 15 (2000), 1-85. (2000) Zbl0983.46021MR1792980
  13. Kalenda, O., 10.4064/sm182-1-2, Stud. Math. 182 (2007), 29-40. (2007) Zbl1139.46018MR2326490DOI10.4064/sm182-1-2
  14. Koppelberg, S., 10.1007/BF00353658, Order 5 (1989), 393-406. (1989) Zbl0676.06019MR1010388DOI10.1007/BF00353658
  15. Koppelberg, S., Counterexamples in minimally generated Boolean algebras, Acta Univ. Carol. Math. Phys. 29 (1988), 27-36. (1988) Zbl0676.06020MR0983448
  16. Koszmider, P., 10.1090/S0002-9947-99-02145-5, Trans. Am. Math. Soc. 351 (1999), 3073-3117. (1999) Zbl0922.03071MR1467471DOI10.1090/S0002-9947-99-02145-5
  17. Leung, D. H., 10.1002/mana.19901490114, Math. Nachr. 149 (1990), 177-181. (1990) Zbl0765.46007MR1124803DOI10.1002/mana.19901490114
  18. Leung, D. H., 10.1017/S0017089500008028, Glasg. Math. J. 33 (1991), 51-54. (1991) Zbl0745.46021MR1089953DOI10.1017/S0017089500008028
  19. Mazur, S., 10.4064/fm-39-1-229-238, Fundam. Math. 39 (1952), 229-238. (1952) MR0055663DOI10.4064/fm-39-1-229-238
  20. Mercourakis, S., 10.1007/BF01299640, Monatsh. Math. 121 (1996), 79-111. (1996) MR1375642DOI10.1007/BF01299640
  21. Plebanek, G., 10.1112/S0025579300006422, Mathematika 38 (1991), 42-49. (1991) MR1116683DOI10.1112/S0025579300006422
  22. Plebanek, G., On some properties of Banach spaces of continuous functions, Séminaire d'initiation a l'analyse 1991/92, Vol. 31 G. Choquet et al. Université Pierre et Marie Curie Paris (1994). (1994) Zbl0876.46016
  23. Plebanek, G., On Mazur property and realcompactness in C ( K ) , In: Topology, Measure and Fractals, Math. Res. Vol. 66 C. Bandt et al. Akademie Verlag (1992). (1992) Zbl0850.46019MR1226275
  24. Plebanek, G., 10.4064/cm-64-1-71-78, Colloq. Math. 64 (1993), 71-78. (1993) Zbl0823.28005MR1201444DOI10.4064/cm-64-1-71-78
  25. Plebanek, G., 10.1016/0166-8641(95)00006-3, Topology Appl. 65 (1995), 257-270 Erratum: Topology Appl. 72 (1996), 99. (1996) Zbl0869.54003MR1357868DOI10.1016/0166-8641(95)00006-3
  26. Sinha, D. P., Arora, K. K., On the Gelfand-Phillips property in Banach spaces with PRI, Collect. Math. 48 (1997), 347-354. (1997) Zbl0903.46015MR1475810
  27. Talagrand, M., Pettis integral and measure theory, Mem. Am. Math. Soc. 307 (1984). (1984) Zbl0582.46049MR0756174
  28. Schlumprecht, T., 10.1002/mana.19921570105, Math. Nachr. 157 (1992), 51-64. (1992) Zbl0797.46013MR1233046DOI10.1002/mana.19921570105
  29. Wilansky, A., 10.1155/S0161171281000021, Int. J. Math. Sci. 4 (1981), 39-53. (1981) Zbl0466.46005MR0606656DOI10.1155/S0161171281000021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.