On extremal sizes of locally -tree graphs
Mieczysław Borowiecki; Piotr Borowiecki; Elżbieta Sidorowicz; Zdzisław Skupień
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 2, page 571-587
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBorowiecki, Mieczysław, et al. "On extremal sizes of locally $k$-tree graphs." Czechoslovak Mathematical Journal 60.2 (2010): 571-587. <http://eudml.org/doc/38028>.
@article{Borowiecki2010,
abstract = {A graph $G$ is a locally $k$-tree graph if for any vertex $v$ the subgraph induced by the neighbours of $v$ is a $k$-tree, $k\ge 0$, where $0$-tree is an edgeless graph, $1$-tree is a tree. We characterize the minimum-size locally $k$-trees with $n$ vertices. The minimum-size connected locally $k$-trees are simply $(k+1)$-trees. For $k\ge 1$, we construct locally $k$-trees which are maximal with respect to the spanning subgraph relation. Consequently, the number of edges in an $n$-vertex locally $k$-tree graph is between $\Omega (n)$ and $O(n^2)$, where both bounds are asymptotically tight. In contrast, the number of edges in an $n$-vertex $k$-tree is always linear in $n$.},
author = {Borowiecki, Mieczysław, Borowiecki, Piotr, Sidorowicz, Elżbieta, Skupień, Zdzisław},
journal = {Czechoslovak Mathematical Journal},
keywords = {extremal problems; local property; locally tree; $k$-tree; extremal problem; local property; locally tree; -tree},
language = {eng},
number = {2},
pages = {571-587},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On extremal sizes of locally $k$-tree graphs},
url = {http://eudml.org/doc/38028},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Borowiecki, Mieczysław
AU - Borowiecki, Piotr
AU - Sidorowicz, Elżbieta
AU - Skupień, Zdzisław
TI - On extremal sizes of locally $k$-tree graphs
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 2
SP - 571
EP - 587
AB - A graph $G$ is a locally $k$-tree graph if for any vertex $v$ the subgraph induced by the neighbours of $v$ is a $k$-tree, $k\ge 0$, where $0$-tree is an edgeless graph, $1$-tree is a tree. We characterize the minimum-size locally $k$-trees with $n$ vertices. The minimum-size connected locally $k$-trees are simply $(k+1)$-trees. For $k\ge 1$, we construct locally $k$-trees which are maximal with respect to the spanning subgraph relation. Consequently, the number of edges in an $n$-vertex locally $k$-tree graph is between $\Omega (n)$ and $O(n^2)$, where both bounds are asymptotically tight. In contrast, the number of edges in an $n$-vertex $k$-tree is always linear in $n$.
LA - eng
KW - extremal problems; local property; locally tree; $k$-tree; extremal problem; local property; locally tree; -tree
UR - http://eudml.org/doc/38028
ER -
References
top- Borowiecki, M., Mihók, P., 10.1016/S0012-365X(00)00430-1, Discrete Math. 236 (2001), 53-58. (2001) MR1830598DOI10.1016/S0012-365X(00)00430-1
- Bugata, P., 10.1016/0012-365X(92)90679-A, Discrete Math. 108 (1992), 253-259. (1992) Zbl0783.05076MR1189848DOI10.1016/0012-365X(92)90679-A
- Bugata, P., Nagy, A., Vávra, R., 10.1002/jgt.3190190314, J. Graph Theory 19 (1995), 417-433. (1995) MR1324491DOI10.1002/jgt.3190190314
- Bulitko, V. K., On graphs with prescribed links of vertices, Trudy Math. Inst. Steklova 133 (1973), 78-94. (1973) MR0434882
- Chartrand, G., Lesniak, L., Graphs and Digraphs, 2nd, Wadsworth & Brooks/Cole Monterey (1986). (1986) Zbl0666.05001MR0834583
- Erdős, P., Simonovits, M., A limit theorem in graph theory, Studia Sci. Math. Hung. 1 (1966), 51-57. (1966) MR0205876
- Fronček, D., Locally linear graphs, Math. Slovaca 39 (1989), 3-6. (1989) MR1016323
- Fronček, D., Locally path-like graphs, Čas. Pěst. Mat. 114 (1989), 176-180. (1989) MR1063763
- Fronček, D., 10.4064/am-21-3-437-440, Applicationes Mathematicae 21 (1992), 437-440. (1992) MR1178691DOI10.4064/am-21-3-437-440
- Hell, P., Graphs with given neighbourhoods I, In: Problémes Combin. et Théorie des Graphes Colloq. Internat. CNRS 260 (1978), 219-223. (1978) MR0539979
- Justel, C. M., Markenzon, L., Lexicographic breadth first search and -trees, In: Proceedings of JIM'2000 Secondes Journées de l'Informatique Messine, Metz, France (2000), 23-28. (2000)
- Kowalska, E., 10.4064/am-19-3-4-497-503, Applicationes Mathematicae 19 (1987), 497-503. (1987) Zbl0718.05022MR0951365DOI10.4064/am-19-3-4-497-503
- Kulkarni, K. H., Sufficient conditions for edge-locally connected and -connected graphs, Čas. Pěst. Mat. 106 (1981), 112-116. (1981) Zbl0479.05043MR0621175
- Mantel, W., Problem 28, Wiskundige Opgaven 10 (1907), 60-61. (1907)
- Rose, D. J., Tarjan, R. E., Lueker, G., 10.1137/0205021, SIAM J. Comput. 5 (1976), 266-283. (1976) Zbl0353.65019MR0408312DOI10.1137/0205021
- Ryjáček, Z., 10.1016/0012-365X(93)90551-4, Discrete Math. 121 (1993), 189-193. (1993) MR1246171DOI10.1016/0012-365X(93)90551-4
- Ryjáček, Z., Zelinka, B., A locally disconnected graph with large number of edges, Math. Slovaca 37 (1987), 195-198. (1987) MR0899435
- Sedláček, J., Local properties of graphs, Čas. Pěst. Mat. 106 (1981), 290-298 Czech. (1981) MR0629727
- Sedláček, J., On local properties of finite graphs, In: Graph Theory, Łagów 1981. LNM 1018 M. Borowiecki, J. W. Kennedy, M. M. Sysło Springer-Verlag New York-Berlin (1983), 242-247. (1983) MR0730654
- Seress, A., Szabó, T., 10.1006/jctb.1995.1020, J. Comb. Theory (B) 63 (1995), 281-293. (1995) MR1320171DOI10.1006/jctb.1995.1020
- Vanderjagt, D. W., 10.1016/0012-365X(74)90129-0, Discrete Math. 10 (1974), 391-395. (1974) Zbl0293.05154MR0357191DOI10.1016/0012-365X(74)90129-0
- Zelinka, B., Locally tree-like graphs, Čas. Pěst. Mat. 108 (1983), 230-238. (1983) Zbl0528.05040MR0716406
- Zykov, A. A., Problem 30, In: Theory of Graphs and Its Applications. Proc. Symp. Smolenice 1963 M. Fiedler Prague (1964), 164-165. (1964)
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.