Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 3, page 675-688
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Yujuan. "Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system." Czechoslovak Mathematical Journal 60.3 (2010): 675-688. <http://eudml.org/doc/38035>.
@article{Chen2010,
abstract = {The paper deals with positive solutions of a nonlocal and degenerate quasilinear parabolic system not in divergence form \[ u\_t = v^p\biggl (\Delta u + a\int \_\Omega u \,\{\rm d\} x\biggr ),\quad v\_t =u^q\biggl (\Delta v + b\int \_\Omega v \,\{\rm d\} x\biggr ) \]
with null Dirichlet boundary conditions. By using the standard approximation method, we first give a series of fine a priori estimates for the solution of the corresponding approximate problem. Then using the diagonal method, we get the local existence and the bounds of the solution $(u,v)$ to this problem. Moreover, a necessary and sufficient condition for the non-global existence of the solution is obtained. Under some further conditions on the initial data, we get criteria for the finite time blow-up of the solution.},
author = {Chen, Yujuan},
journal = {Czechoslovak Mathematical Journal},
keywords = {strongly coupled; degenerate parabolic system; nonlocal source; global existence; blow-up; strongly coupled; degenerate parabolic system; nonlocal source; global existence; blow-up},
language = {eng},
number = {3},
pages = {675-688},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system},
url = {http://eudml.org/doc/38035},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Chen, Yujuan
TI - Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 675
EP - 688
AB - The paper deals with positive solutions of a nonlocal and degenerate quasilinear parabolic system not in divergence form \[ u_t = v^p\biggl (\Delta u + a\int _\Omega u \,{\rm d} x\biggr ),\quad v_t =u^q\biggl (\Delta v + b\int _\Omega v \,{\rm d} x\biggr ) \]
with null Dirichlet boundary conditions. By using the standard approximation method, we first give a series of fine a priori estimates for the solution of the corresponding approximate problem. Then using the diagonal method, we get the local existence and the bounds of the solution $(u,v)$ to this problem. Moreover, a necessary and sufficient condition for the non-global existence of the solution is obtained. Under some further conditions on the initial data, we get criteria for the finite time blow-up of the solution.
LA - eng
KW - strongly coupled; degenerate parabolic system; nonlocal source; global existence; blow-up; strongly coupled; degenerate parabolic system; nonlocal source; global existence; blow-up
UR - http://eudml.org/doc/38035
ER -
References
top- Anderson, J. R., Deng, K., 10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO;2-Y, Math. Methods Appl. Sci. 20 (1997), 1069-1087. (1997) Zbl0883.35066MR1465394DOI10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO;2-Y
- Chen, H. W., 10.1006/jmaa.1995.1166, J. Math. Anal. Appl. 192 (1995), 180-193. (1995) MR1329419DOI10.1006/jmaa.1995.1166
- Chen, Y., Gao, H., 10.1016/j.jmaa.2006.08.014, J. Math. Anal. Appl. 330 (2007), 852-863. (2007) Zbl1113.35100MR2308412DOI10.1016/j.jmaa.2006.08.014
- Deng, W., Li, Y., Xie, C., 10.1016/S0893-9659(03)80118-0, Appl. Math. Lett. 16 (2003), 803-808. (2003) Zbl1059.35066MR1986054DOI10.1016/S0893-9659(03)80118-0
- Deng, W., Li, Y., Xie, C., 10.1016/S0362-546X(03)00226-8, Nonlinear Anal., Theory Methods Appl. 55 (2003), 233-244. (2003) Zbl1032.35077MR2007471DOI10.1016/S0362-546X(03)00226-8
- Duan, Z. W., Deng, W., Xie, C., 10.1016/S0898-1221(04)90081-8, Comput. Math. Appl. 47 (2004), 977-995. (2004) MR2060331DOI10.1016/S0898-1221(04)90081-8
- Duan, Z. W., Zhou, L., 10.1006/jmaa.1999.6665, J. Math. Anal. Appl. 244 (2000), 263-278. (2000) Zbl0959.35100MR1753038DOI10.1006/jmaa.1999.6665
- Friedman, A., Mcleod, B., 10.1512/iumj.1985.34.34025, Indiana Univ. Math. J. 34 (1985), 425-447. (1985) Zbl0576.35068MR0783924DOI10.1512/iumj.1985.34.34025
- Friedman, A., Mcleod, B., 10.1007/BF00251413, Arch. Ration. Mech. Appl. 96 (1987), 55-80. (1987) MR0853975DOI10.1007/BF00251413
- Gage, M. E., 10.1090/conm/127/1155408, Contemp. Math. 127 (1992), 41-58. (1992) Zbl0770.35029MR1155408DOI10.1090/conm/127/1155408
- Ladyzenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N., Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society Providence (1968). (1968)
- Pao, C. V., Nonlinear Parabolic and Elliptic Equations, Plenum Press New York (1992). (1992) Zbl0777.35001MR1212084
- Passo, R. Dal, Luckhaus, S., 10.1016/0022-0396(87)90099-4, J. Differ. Equations 69 (1987), 1-14. (1987) MR0897437DOI10.1016/0022-0396(87)90099-4
- Wang, M. X., 10.1016/S0022-247X(02)00347-5, J. Math. Anal. Appl. 274 (2002), 424-436. (2002) Zbl1121.35321MR1936706DOI10.1016/S0022-247X(02)00347-5
- Wang, M. X., Xie, C. H., 10.1007/s00033-004-1133-4, Z. Angew. Math. Phys. 55 (2004), 741-755. (2004) Zbl1181.35132MR2087763DOI10.1007/s00033-004-1133-4
- Wang, S., Wang, M. X., Xie, C. H., 10.1007/PL00001503, Z. Angew. Math. Phys. 51 (2000), 149-159. (2000) Zbl0961.35077MR1745296DOI10.1007/PL00001503
- Wiegner, M., 10.1016/S0362-546X(96)00027-2, Nonlinear Anal., Theory Methods Appl. 28 (1997), 1977-1995. (1997) Zbl0874.35061MR1436366DOI10.1016/S0362-546X(96)00027-2
- Zimmer, T., On a degenerate parabolic equation. IWR Heidelberg, Preprint 93-05 (1993). (1993)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.