Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system

Yujuan Chen

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 3, page 675-688
  • ISSN: 0011-4642

Abstract

top
The paper deals with positive solutions of a nonlocal and degenerate quasilinear parabolic system not in divergence form u t = v p Δ u + a Ω u d x , v t = u q Δ v + b Ω v d x with null Dirichlet boundary conditions. By using the standard approximation method, we first give a series of fine a priori estimates for the solution of the corresponding approximate problem. Then using the diagonal method, we get the local existence and the bounds of the solution ( u , v ) to this problem. Moreover, a necessary and sufficient condition for the non-global existence of the solution is obtained. Under some further conditions on the initial data, we get criteria for the finite time blow-up of the solution.

How to cite

top

Chen, Yujuan. "Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system." Czechoslovak Mathematical Journal 60.3 (2010): 675-688. <http://eudml.org/doc/38035>.

@article{Chen2010,
abstract = {The paper deals with positive solutions of a nonlocal and degenerate quasilinear parabolic system not in divergence form \[ u\_t = v^p\biggl (\Delta u + a\int \_\Omega u \,\{\rm d\} x\biggr ),\quad v\_t =u^q\biggl (\Delta v + b\int \_\Omega v \,\{\rm d\} x\biggr ) \] with null Dirichlet boundary conditions. By using the standard approximation method, we first give a series of fine a priori estimates for the solution of the corresponding approximate problem. Then using the diagonal method, we get the local existence and the bounds of the solution $(u,v)$ to this problem. Moreover, a necessary and sufficient condition for the non-global existence of the solution is obtained. Under some further conditions on the initial data, we get criteria for the finite time blow-up of the solution.},
author = {Chen, Yujuan},
journal = {Czechoslovak Mathematical Journal},
keywords = {strongly coupled; degenerate parabolic system; nonlocal source; global existence; blow-up; strongly coupled; degenerate parabolic system; nonlocal source; global existence; blow-up},
language = {eng},
number = {3},
pages = {675-688},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system},
url = {http://eudml.org/doc/38035},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Chen, Yujuan
TI - Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 675
EP - 688
AB - The paper deals with positive solutions of a nonlocal and degenerate quasilinear parabolic system not in divergence form \[ u_t = v^p\biggl (\Delta u + a\int _\Omega u \,{\rm d} x\biggr ),\quad v_t =u^q\biggl (\Delta v + b\int _\Omega v \,{\rm d} x\biggr ) \] with null Dirichlet boundary conditions. By using the standard approximation method, we first give a series of fine a priori estimates for the solution of the corresponding approximate problem. Then using the diagonal method, we get the local existence and the bounds of the solution $(u,v)$ to this problem. Moreover, a necessary and sufficient condition for the non-global existence of the solution is obtained. Under some further conditions on the initial data, we get criteria for the finite time blow-up of the solution.
LA - eng
KW - strongly coupled; degenerate parabolic system; nonlocal source; global existence; blow-up; strongly coupled; degenerate parabolic system; nonlocal source; global existence; blow-up
UR - http://eudml.org/doc/38035
ER -

References

top
  1. Anderson, J. R., Deng, K., 10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO;2-Y, Math. Methods Appl. Sci. 20 (1997), 1069-1087. (1997) Zbl0883.35066MR1465394DOI10.1002/(SICI)1099-1476(19970910)20:13<1069::AID-MMA867>3.0.CO;2-Y
  2. Chen, H. W., 10.1006/jmaa.1995.1166, J. Math. Anal. Appl. 192 (1995), 180-193. (1995) MR1329419DOI10.1006/jmaa.1995.1166
  3. Chen, Y., Gao, H., 10.1016/j.jmaa.2006.08.014, J. Math. Anal. Appl. 330 (2007), 852-863. (2007) Zbl1113.35100MR2308412DOI10.1016/j.jmaa.2006.08.014
  4. Deng, W., Li, Y., Xie, C., 10.1016/S0893-9659(03)80118-0, Appl. Math. Lett. 16 (2003), 803-808. (2003) Zbl1059.35066MR1986054DOI10.1016/S0893-9659(03)80118-0
  5. Deng, W., Li, Y., Xie, C., 10.1016/S0362-546X(03)00226-8, Nonlinear Anal., Theory Methods Appl. 55 (2003), 233-244. (2003) Zbl1032.35077MR2007471DOI10.1016/S0362-546X(03)00226-8
  6. Duan, Z. W., Deng, W., Xie, C., 10.1016/S0898-1221(04)90081-8, Comput. Math. Appl. 47 (2004), 977-995. (2004) MR2060331DOI10.1016/S0898-1221(04)90081-8
  7. Duan, Z. W., Zhou, L., 10.1006/jmaa.1999.6665, J. Math. Anal. Appl. 244 (2000), 263-278. (2000) Zbl0959.35100MR1753038DOI10.1006/jmaa.1999.6665
  8. Friedman, A., Mcleod, B., 10.1512/iumj.1985.34.34025, Indiana Univ. Math. J. 34 (1985), 425-447. (1985) Zbl0576.35068MR0783924DOI10.1512/iumj.1985.34.34025
  9. Friedman, A., Mcleod, B., 10.1007/BF00251413, Arch. Ration. Mech. Appl. 96 (1987), 55-80. (1987) MR0853975DOI10.1007/BF00251413
  10. Gage, M. E., 10.1090/conm/127/1155408, Contemp. Math. 127 (1992), 41-58. (1992) Zbl0770.35029MR1155408DOI10.1090/conm/127/1155408
  11. Ladyzenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N., Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society Providence (1968). (1968) 
  12. Pao, C. V., Nonlinear Parabolic and Elliptic Equations, Plenum Press New York (1992). (1992) Zbl0777.35001MR1212084
  13. Passo, R. Dal, Luckhaus, S., 10.1016/0022-0396(87)90099-4, J. Differ. Equations 69 (1987), 1-14. (1987) MR0897437DOI10.1016/0022-0396(87)90099-4
  14. Wang, M. X., 10.1016/S0022-247X(02)00347-5, J. Math. Anal. Appl. 274 (2002), 424-436. (2002) Zbl1121.35321MR1936706DOI10.1016/S0022-247X(02)00347-5
  15. Wang, M. X., Xie, C. H., 10.1007/s00033-004-1133-4, Z. Angew. Math. Phys. 55 (2004), 741-755. (2004) Zbl1181.35132MR2087763DOI10.1007/s00033-004-1133-4
  16. Wang, S., Wang, M. X., Xie, C. H., 10.1007/PL00001503, Z. Angew. Math. Phys. 51 (2000), 149-159. (2000) Zbl0961.35077MR1745296DOI10.1007/PL00001503
  17. Wiegner, M., 10.1016/S0362-546X(96)00027-2, Nonlinear Anal., Theory Methods Appl. 28 (1997), 1977-1995. (1997) Zbl0874.35061MR1436366DOI10.1016/S0362-546X(96)00027-2
  18. Zimmer, T., On a degenerate parabolic equation. IWR Heidelberg, Preprint 93-05 (1993). (1993) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.