On zeros of characters of finite groups
Jinshan Zhang; Zhencai Shen; Dandan Liu
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 3, page 801-816
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Jinshan, Shen, Zhencai, and Liu, Dandan. "On zeros of characters of finite groups." Czechoslovak Mathematical Journal 60.3 (2010): 801-816. <http://eudml.org/doc/38042>.
@article{Zhang2010,
abstract = {For a finite group $G$ and a non-linear irreducible complex character $\chi $ of $G$ write $\upsilon (\chi )=\lbrace g\in G\mid \chi (g)=0\rbrace $. In this paper, we study the finite non-solvable groups $G$ such that $\upsilon (\chi )$ consists of at most two conjugacy classes for all but one of the non-linear irreducible characters $\chi $ of $G$. In particular, we characterize a class of finite solvable groups which are closely related to the above-mentioned question and are called solvable $\varphi $-groups. As a corollary, we answer Research Problem $2$ in [Y. Berkovich and L. Kazarin: Finite groups in which the zeros of every non-linear irreducible character are conjugate modulo its kernel. Houston J. Math. 24 (1998), 619–630.] posed by Y. Berkovich and L. Kazarin.},
author = {Zhang, Jinshan, Shen, Zhencai, Liu, Dandan},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite groups; characters; zeros; irreducible characters; zeros of characters; finite soluble groups; conjugacy classes},
language = {eng},
number = {3},
pages = {801-816},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On zeros of characters of finite groups},
url = {http://eudml.org/doc/38042},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Zhang, Jinshan
AU - Shen, Zhencai
AU - Liu, Dandan
TI - On zeros of characters of finite groups
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 801
EP - 816
AB - For a finite group $G$ and a non-linear irreducible complex character $\chi $ of $G$ write $\upsilon (\chi )=\lbrace g\in G\mid \chi (g)=0\rbrace $. In this paper, we study the finite non-solvable groups $G$ such that $\upsilon (\chi )$ consists of at most two conjugacy classes for all but one of the non-linear irreducible characters $\chi $ of $G$. In particular, we characterize a class of finite solvable groups which are closely related to the above-mentioned question and are called solvable $\varphi $-groups. As a corollary, we answer Research Problem $2$ in [Y. Berkovich and L. Kazarin: Finite groups in which the zeros of every non-linear irreducible character are conjugate modulo its kernel. Houston J. Math. 24 (1998), 619–630.] posed by Y. Berkovich and L. Kazarin.
LA - eng
KW - finite groups; characters; zeros; irreducible characters; zeros of characters; finite soluble groups; conjugacy classes
UR - http://eudml.org/doc/38042
ER -
References
top- Berkovich, Y., Kazarin, L., Finite groups in which the zeros of every nonlinear irreducible character are conjugate modulo its kernel, Houston J. Math. 24 (1998), 619-630. (1998) Zbl0969.20004MR1686628
- Bianchi, M., Chillag, D., Gillio, A., Finite groups in which every irreducible character vanishes on at most two conjugacy classes, Houston J. Math. 26 (2000), 451-461. (2000) Zbl0986.20006MR1811932
- Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A., Atlas of Finite Groups, Oxford Univ. Press, Oxford and New York (1985). (1985) Zbl0568.20001MR0827219
- Gagola, S. M., 10.2140/pjm.1983.109.363, Pacific J. Math. 109 (1983), 363-385. (1983) Zbl0536.20005MR0721927DOI10.2140/pjm.1983.109.363
- Gallagher, P. X., 10.1016/0021-8693(66)90048-2, J. Algebra 4 (1965), 42-45. (1965) MR0200356DOI10.1016/0021-8693(66)90048-2
- Gorenstein, D., Finite Groups, Harper-Row (1968). (1968) Zbl0185.05701MR0231903
- Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York (1967). (1967) Zbl0217.07201MR0224703
- Huppert, B., Blackburn, N., Finite groups III, Springer-Verlag, Berlin, New York (1982). (1982) Zbl0514.20002MR0662826
- Isaacs, I. M., Character Theory of Finite Groups, Academic Press, New York (1976). (1976) Zbl0337.20005MR0460423
- Isaacs, I. M., 10.4153/CJM-1989-003-2, Canada J. Math. 41 (1989), 68-82. (1989) Zbl0686.20002MR0996718DOI10.4153/CJM-1989-003-2
- Kuisch, E. B., Waall, R. W. Van Der, 10.1016/0021-8693(92)90027-J, J. Algebra 149 (1992), 454-471. (1992) MR1172440DOI10.1016/0021-8693(92)90027-J
- Macdonald, I. D., 10.1007/BF02761376, Israel J. Math. 40 (1981), 350-364. (1981) Zbl0486.20016MR0654591DOI10.1007/BF02761376
- Manz, O., 10.1016/0021-8693(85)90210-8, J. Algebra 94 (1985), 211-255. (1985) MR0789547DOI10.1016/0021-8693(85)90210-8
- Manz, O., Staszewski, R., 10.1007/BF01164012, Math. Z. 192 (1986), 383-389. (1986) Zbl0606.20011MR0845210DOI10.1007/BF01164012
- Manz, O., Wolf, T. R., Representations of solvable groups, Cambridge University Press, Cambridge (1993). (1993) Zbl0928.20008MR1261638
- Mazurov, V. D., 10.1023/A:1022676707499, Algebra and Logic 42 (2003), 29-36. (2003) Zbl1035.20025MR1988023DOI10.1023/A:1022676707499
- Noritzsch, T., 10.1006/jabr.1995.1213, J. Algebra 175 (1995), 767-798. (1995) MR1341745DOI10.1006/jabr.1995.1213
- Qian, G. H., Shi, W. J., A characterization of in terms of the number of character zeros, Contributions to Algebra and Geometry 1 (2009), 1-9. (2009) MR2499777
- Qian, G. H., Shi, W. J., You, X. Z., 10.1081/AGB-200039286, Comm. Algebra 32 (2004), 4809-4820. (2004) Zbl1094.20013MR2111598DOI10.1081/AGB-200039286
- Ren, Y. C., Zhang, J. S., On zeros of characters of finite groups and solvable -groups, Adv. Math. (China) 37 (2008), 426-436. (2008) MR2463235
- Seitz, G., 10.1090/S0002-9939-1968-0222160-X, Proc. Amer. Soc. 19 (1968), 459-461. (1968) Zbl0244.20010MR0222160DOI10.1090/S0002-9939-1968-0222160-X
- Suzuki, M., 10.1090/S0002-9947-1961-0131459-5, Soc. Trans. Amer. Math. Soc. 99 (1961), 425-470. (1961) Zbl0101.01604MR0131459DOI10.1090/S0002-9947-1961-0131459-5
- Veralopez, A., Veralopez, J., 10.1007/BF02764723, Israel J. Math. 51 (1985), 305-338. (1985) MR0804489DOI10.1007/BF02764723
- Willems, W., 10.1016/0021-8693(88)90176-7, J. Algebra 113 (1988), 511-522. (1988) Zbl0653.20014MR0929777DOI10.1016/0021-8693(88)90176-7
- Wong, W. J., 10.1017/S1446788700004511, J. Austral. Math. Soc. 7 (1967), 570-576. (1967) Zbl0203.02902MR0220821DOI10.1017/S1446788700004511
- Zhang, J. S., Shi, J. T., Shen, Z. C., Finite groups whose irreducible characters vanish on at most three conjugacy classes, (to appear) in J. Group Theory. MR2736158
- Zhang, J. S., Shi, W. J., 10.1515/JGT.2008.045, J. Group Theory. 11 (2008), 697-708. (2008) Zbl1159.20010MR2446151DOI10.1515/JGT.2008.045
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.