The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with vertices and pendant vertices
Muhuo Liu; Xuezhong Tan; Bo Lian Liu
Czechoslovak Mathematical Journal (2010)
- Volume: 60, Issue: 3, page 849-867
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Muhuo, Tan, Xuezhong, and Liu, Bo Lian. "The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices." Czechoslovak Mathematical Journal 60.3 (2010): 849-867. <http://eudml.org/doc/38045>.
@article{Liu2010,
abstract = {In this paper, the effects on the signless Laplacian spectral radius of a graph are studied when some operations, such as edge moving, edge subdividing, are applied to the graph. Moreover, the largest signless Laplacian spectral radius among the all unicyclic graphs with $n$ vertices and $k$ pendant vertices is identified. Furthermore, we determine the graphs with the largest Laplacian spectral radii among the all unicyclic graphs and bicyclic graphs with $n$ vertices and $k$ pendant vertices, respectively.},
author = {Liu, Muhuo, Tan, Xuezhong, Liu, Bo Lian},
journal = {Czechoslovak Mathematical Journal},
keywords = {Laplacian matrix; signless Laplacian matrix; spectral radius; Laplacian matrix; signless Laplacian matrix; spectral radius},
language = {eng},
number = {3},
pages = {849-867},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices},
url = {http://eudml.org/doc/38045},
volume = {60},
year = {2010},
}
TY - JOUR
AU - Liu, Muhuo
AU - Tan, Xuezhong
AU - Liu, Bo Lian
TI - The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 849
EP - 867
AB - In this paper, the effects on the signless Laplacian spectral radius of a graph are studied when some operations, such as edge moving, edge subdividing, are applied to the graph. Moreover, the largest signless Laplacian spectral radius among the all unicyclic graphs with $n$ vertices and $k$ pendant vertices is identified. Furthermore, we determine the graphs with the largest Laplacian spectral radii among the all unicyclic graphs and bicyclic graphs with $n$ vertices and $k$ pendant vertices, respectively.
LA - eng
KW - Laplacian matrix; signless Laplacian matrix; spectral radius; Laplacian matrix; signless Laplacian matrix; spectral radius
UR - http://eudml.org/doc/38045
ER -
References
top- Brualdi, R. A., Solheid, E. S., On the spectral radius of connected graphs, Publ. Inst. Math. Beograd 39(53) (1986), 45-54. (1986) Zbl0603.05028MR0869175
- Cardoso, D. M., Cvetković, D., Rowlinson, P., Simić, S. K., A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph, Linear Algebra Appl. 429 (2008), 2770-2780. (2008) MR2455532
- Cvetković, D. M., Doob, M., Sachs, H., Spectra of Graphs. Theory and Applications, VEB Deutscher Verlag der Wissenschaften Berlin (1980). (1980)
- Cvetković, D. M., Rowlinson, P., Simić, S., Eigenspaces of Graphs, Cambridge University Press Cambridge (1997), 56-60. (1997) MR1440854
- Cvetković, D., Rowlinson, P., Simić, S. K., 10.1016/j.laa.2007.01.009, Linear Algebra Appl. 423 (2007), 155-171. (2007) MR2312332DOI10.1016/j.laa.2007.01.009
- Geng, X. Y., Li, S. C., The spectral radius of tricyclic graphs with vertices and pendant vertices, Linear Algebra Appl. 428 (2008), 2639-2653. (2008) MR2416577
- Grossman, J. W., Kulkarni, D. M., Schochetman, I. E., Algebraic graph theory without orientation, Linear Algebra Appl. 212-213 (1994), 289-307. (1994) Zbl0817.05047MR1306983
- Guo, J. M., The effect on the Laplacian spectral radius of a graph by adding or grafting edges, Linear Algebra Appl. 413 (2006), 59-71. (2006) Zbl1082.05059MR2202092
- Guo, S. G., The spectral radius of unicyclic and bicyclic graphs with vertices and pendant vertices, Linear Algebra Appl. 408 (2005), 78-85. (2005) Zbl1073.05550MR2166856
- Heuvel, J. van den, Hamilton cycles and eigenvalues of graphs, Linear Algebra Appl. 226-228 (1995), 723-730. (1995) MR1344594
- Li, J. S., Zhang, X.-D., On the Laplacian eigenvalues of a graph, Linear Algebra Appl. 285 (1998), 305-307. (1998) Zbl0931.05052MR1653547
- Li, Q., Feng, K., On the largest eigenvalue of a graph, Acta. Math. Appl. Sinica 2 (1979), 167-175 Chinese. (1979) MR0549045
- Liu, B. L., Combinatorial Matrix Theory, Science Press Beijing (2005), Chinese. (2005)
- Merris, R., Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197-198 (1994), 143-176. (1994) Zbl0802.05053MR1275613
- Pan, Y. L., Sharp upper bounds for the Laplacian graph eigenvalues, Linear Algebra Appl. 355 (2002), 287-295. (2002) Zbl1015.05055MR1930150
- Rojo, O., Soto, R., Rojo, H., An always nontrivial upper bound for Laplacian graph eigenvalues, Linear Algebra Appl. 312 (2000), 155-159. (2000) Zbl0958.05088MR1759329
- Wu, B., Xiao, E., Hong, Y., The spectral radius of trees on pendant vertices, Linear Algebra Appl. 395 (2005), 343-349. (2005) Zbl1057.05057MR2112895
- Zhang, X. D., 10.1016/j.disc.2007.06.017, Discrete Math. 308 (2008), 3143-3150. (2008) Zbl1156.05038MR2423396DOI10.1016/j.disc.2007.06.017
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.