The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with n vertices and k pendant vertices

Muhuo Liu; Xuezhong Tan; Bo Lian Liu

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 3, page 849-867
  • ISSN: 0011-4642

Abstract

top
In this paper, the effects on the signless Laplacian spectral radius of a graph are studied when some operations, such as edge moving, edge subdividing, are applied to the graph. Moreover, the largest signless Laplacian spectral radius among the all unicyclic graphs with n vertices and k pendant vertices is identified. Furthermore, we determine the graphs with the largest Laplacian spectral radii among the all unicyclic graphs and bicyclic graphs with n vertices and k pendant vertices, respectively.

How to cite

top

Liu, Muhuo, Tan, Xuezhong, and Liu, Bo Lian. "The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices." Czechoslovak Mathematical Journal 60.3 (2010): 849-867. <http://eudml.org/doc/38045>.

@article{Liu2010,
abstract = {In this paper, the effects on the signless Laplacian spectral radius of a graph are studied when some operations, such as edge moving, edge subdividing, are applied to the graph. Moreover, the largest signless Laplacian spectral radius among the all unicyclic graphs with $n$ vertices and $k$ pendant vertices is identified. Furthermore, we determine the graphs with the largest Laplacian spectral radii among the all unicyclic graphs and bicyclic graphs with $n$ vertices and $k$ pendant vertices, respectively.},
author = {Liu, Muhuo, Tan, Xuezhong, Liu, Bo Lian},
journal = {Czechoslovak Mathematical Journal},
keywords = {Laplacian matrix; signless Laplacian matrix; spectral radius; Laplacian matrix; signless Laplacian matrix; spectral radius},
language = {eng},
number = {3},
pages = {849-867},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices},
url = {http://eudml.org/doc/38045},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Liu, Muhuo
AU - Tan, Xuezhong
AU - Liu, Bo Lian
TI - The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 3
SP - 849
EP - 867
AB - In this paper, the effects on the signless Laplacian spectral radius of a graph are studied when some operations, such as edge moving, edge subdividing, are applied to the graph. Moreover, the largest signless Laplacian spectral radius among the all unicyclic graphs with $n$ vertices and $k$ pendant vertices is identified. Furthermore, we determine the graphs with the largest Laplacian spectral radii among the all unicyclic graphs and bicyclic graphs with $n$ vertices and $k$ pendant vertices, respectively.
LA - eng
KW - Laplacian matrix; signless Laplacian matrix; spectral radius; Laplacian matrix; signless Laplacian matrix; spectral radius
UR - http://eudml.org/doc/38045
ER -

References

top
  1. Brualdi, R. A., Solheid, E. S., On the spectral radius of connected graphs, Publ. Inst. Math. Beograd 39(53) (1986), 45-54. (1986) Zbl0603.05028MR0869175
  2. Cardoso, D. M., Cvetković, D., Rowlinson, P., Simić, S. K., A sharp lower bound for the least eigenvalue of the signless Laplacian of a non-bipartite graph, Linear Algebra Appl. 429 (2008), 2770-2780. (2008) MR2455532
  3. Cvetković, D. M., Doob, M., Sachs, H., Spectra of Graphs. Theory and Applications, VEB Deutscher Verlag der Wissenschaften Berlin (1980). (1980) 
  4. Cvetković, D. M., Rowlinson, P., Simić, S., Eigenspaces of Graphs, Cambridge University Press Cambridge (1997), 56-60. (1997) MR1440854
  5. Cvetković, D., Rowlinson, P., Simić, S. K., 10.1016/j.laa.2007.01.009, Linear Algebra Appl. 423 (2007), 155-171. (2007) MR2312332DOI10.1016/j.laa.2007.01.009
  6. Geng, X. Y., Li, S. C., The spectral radius of tricyclic graphs with n vertices and k pendant vertices, Linear Algebra Appl. 428 (2008), 2639-2653. (2008) MR2416577
  7. Grossman, J. W., Kulkarni, D. M., Schochetman, I. E., Algebraic graph theory without orientation, Linear Algebra Appl. 212-213 (1994), 289-307. (1994) Zbl0817.05047MR1306983
  8. Guo, J. M., The effect on the Laplacian spectral radius of a graph by adding or grafting edges, Linear Algebra Appl. 413 (2006), 59-71. (2006) Zbl1082.05059MR2202092
  9. Guo, S. G., The spectral radius of unicyclic and bicyclic graphs with n vertices and k pendant vertices, Linear Algebra Appl. 408 (2005), 78-85. (2005) Zbl1073.05550MR2166856
  10. Heuvel, J. van den, Hamilton cycles and eigenvalues of graphs, Linear Algebra Appl. 226-228 (1995), 723-730. (1995) MR1344594
  11. Li, J. S., Zhang, X.-D., On the Laplacian eigenvalues of a graph, Linear Algebra Appl. 285 (1998), 305-307. (1998) Zbl0931.05052MR1653547
  12. Li, Q., Feng, K., On the largest eigenvalue of a graph, Acta. Math. Appl. Sinica 2 (1979), 167-175 Chinese. (1979) MR0549045
  13. Liu, B. L., Combinatorial Matrix Theory, Science Press Beijing (2005), Chinese. (2005) 
  14. Merris, R., Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197-198 (1994), 143-176. (1994) Zbl0802.05053MR1275613
  15. Pan, Y. L., Sharp upper bounds for the Laplacian graph eigenvalues, Linear Algebra Appl. 355 (2002), 287-295. (2002) Zbl1015.05055MR1930150
  16. Rojo, O., Soto, R., Rojo, H., An always nontrivial upper bound for Laplacian graph eigenvalues, Linear Algebra Appl. 312 (2000), 155-159. (2000) Zbl0958.05088MR1759329
  17. Wu, B., Xiao, E., Hong, Y., The spectral radius of trees on k pendant vertices, Linear Algebra Appl. 395 (2005), 343-349. (2005) Zbl1057.05057MR2112895
  18. Zhang, X. D., 10.1016/j.disc.2007.06.017, Discrete Math. 308 (2008), 3143-3150. (2008) Zbl1156.05038MR2423396DOI10.1016/j.disc.2007.06.017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.