Displaying similar documents to “The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with n vertices and k pendant vertices”

Minimizing Laplacian spectral radius of unicyclic graphs with fixed girth

Kamal Lochan Patra, Binod Kumar Sahoo (2013)

Czechoslovak Mathematical Journal

Similarity:

In this paper we consider the following problem: Over the class of all simple connected unicyclic graphs on n vertices with girth g ( n , g being fixed), which graph minimizes the Laplacian spectral radius? Let U n , g be the lollipop graph obtained by appending a pendent vertex of a path on n - g ( n > g ) vertices to a vertex of a cycle on g 3 vertices. We prove that the graph U n , g uniquely minimizes the Laplacian spectral radius for n 2 g - 1 when g is even and for n 3 g - 1 when g is odd.

Radius-invariant graphs

Vojtech Bálint, Ondrej Vacek (2004)

Mathematica Bohemica

Similarity:

The eccentricity e ( v ) of a vertex v is defined as the distance to a farthest vertex from v . The radius of a graph G is defined as a r ( G ) = min u V ( G ) { e ( u ) } . A graph G is radius-edge-invariant if r ( G - e ) = r ( G ) for every e E ( G ) , radius-vertex-invariant if r ( G - v ) = r ( G ) for every v V ( G ) and radius-adding-invariant if r ( G + e ) = r ( G ) for every e E ( G ¯ ) . Such classes of graphs are studied in this paper.

One-two descriptor of graphs

K. CH. Das, I. Gutman, D. Vukičević (2011)

Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques

Similarity: