Stability processes of moving invariant manifolds in uncertain impulsive differential-difference equations
Mathematica Bohemica (2009)
- Volume: 134, Issue: 1, page 67-76
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topStamov, Gani Tr.. "Stability processes of moving invariant manifolds in uncertain impulsive differential-difference equations." Mathematica Bohemica 134.1 (2009): 67-76. <http://eudml.org/doc/38074>.
@article{Stamov2009,
abstract = {We present a result on the stability of moving invariant manifolds of nonlinear uncertain impulsive differential-difference equations. The result is obtained by means of piecewise continuous Lyapunov functions and a comparison principle.},
author = {Stamov, Gani Tr.},
journal = {Mathematica Bohemica},
keywords = {moving invariant set; stability theory; uncertain impulsive differential-difference system; moving invariant set; stability theory},
language = {eng},
number = {1},
pages = {67-76},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stability processes of moving invariant manifolds in uncertain impulsive differential-difference equations},
url = {http://eudml.org/doc/38074},
volume = {134},
year = {2009},
}
TY - JOUR
AU - Stamov, Gani Tr.
TI - Stability processes of moving invariant manifolds in uncertain impulsive differential-difference equations
JO - Mathematica Bohemica
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 134
IS - 1
SP - 67
EP - 76
AB - We present a result on the stability of moving invariant manifolds of nonlinear uncertain impulsive differential-difference equations. The result is obtained by means of piecewise continuous Lyapunov functions and a comparison principle.
LA - eng
KW - moving invariant set; stability theory; uncertain impulsive differential-difference system; moving invariant set; stability theory
UR - http://eudml.org/doc/38074
ER -
References
top- Bainov, D., Kostadinov, S., Nguyen, Van Min, Dichotomies and Integral Manifolds of Impulsive Differential Equations, SCT Publishing, Singapore (1994). (1994)
- Bainov, D., Stamova, I. M., 10.1017/S1446181100011986, ANZIAM J. 42 (2001), 341-353. (2001) Zbl0980.93074MR1818254DOI10.1017/S1446181100011986
- Bainov, D., Dishliev, A. B., Stamova, I. M., Continuous dependence of solutions of impulsive systems of differential-diference equations on initial data and on parameter, Bol. Soc. Parana. Mat. 18 (1998), 21-34. (1998) MR1769790
- Lakshmikantham, V., Leela, S., Martynyuk, A. A., Stability Analysis of Nonlinear Systems, Marcel Dekker, New York (1989). (1989) Zbl0676.34003MR0984861
- Lakshmikantham, V., Leela, S., Martynyuk, A. A., Practical Stability of Nonlinear Systems, World Scientific Publishing, Singapore (1990). (1990) Zbl0753.34037MR1089428
- Lakshmikantham, V., Vatsala, S. A., Stability of moving invariant sets, Advances in Nonlinear Dynamics. Langhorne, PA: Cordon and Breach. Stab. Control Theory Methods Appl. (1997), 79-83 Sivasundaram, S. (1997) Zbl0947.34039MR1479421
- Shendge, G. R., 10.1016/0022-247X(83)90110-5, J. Math. Anal. Appl. 95 (1983), 319-334. (1983) MR0716086DOI10.1016/0022-247X(83)90110-5
- Siljak, D. D., Ikeda, M., Ohta, Y., Parametic stability, Proccedings Universita di Genova-Ohio State University Joint Conference: Birkhauser (1991), 1-20. (1991) MR1125087
- Stamov, G., Stability of moving invariant maniolds for impulsive differential equations, J. Tech. Univ. Plovdiv Fundam. Sci. Appl., Ser. A Pure Appl. Math. 7 (1999), 99-107. (1999) MR1834207
- Stamov, G., Stability of moving conditionally manifolds for impulsive differential equations, Adv. Stud. Contemp. Math. (Kyungshang) 9 (2004), 99-107. (2004) MR2067833
- Stamov, G., Impulsive integro-differential equations and stability of moving invariant maniolds, Methods Appl. Anal. 14 (2007), 69-76. (2007) MR2392627
- Stamova, I., Stamov, G., 10.1016/S0377-0427(99)00385-4, J. Comput. Appl. Math. 130 (2001), 163-171. (2001) Zbl1022.34070MR1827978DOI10.1016/S0377-0427(99)00385-4
- Vatsala, A. S., Deo, G. S., Stability of moving invariant sets for functional differential systems, Int. J. Nonlin. Diff. Eq.: Theory, Methods and Appl. 3 (1997), 179-186. (1997)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.