On some cohomological properties of the Lie algebra of Euclidean motions
Mathematica Bohemica (2009)
- Volume: 134, Issue: 4, page 337-348
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBakšová, Marta, and Dekrét, Anton. "On some cohomological properties of the Lie algebra of Euclidean motions." Mathematica Bohemica 134.4 (2009): 337-348. <http://eudml.org/doc/38096>.
@article{Bakšová2009,
abstract = {The external derivative $d$ on differential manifolds inspires graded operators on complexes of spaces $\Lambda ^rg^\ast $, $\Lambda ^rg^\ast \otimes g$, $\Lambda ^rg^\ast \otimes g^\ast $ stated by $g^\ast $ dual to a Lie algebra $g$. Cohomological properties of these operators are studied in the case of the Lie algebra $g=se( 3 )$ of the Lie group of Euclidean motions.},
author = {Bakšová, Marta, Dekrét, Anton},
journal = {Mathematica Bohemica},
keywords = {Lie group; Lie algebra; dual space; twist; wrench; cohomology; Lie group; Lie algebra; dual space; twist; wrench; cohomology},
language = {eng},
number = {4},
pages = {337-348},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some cohomological properties of the Lie algebra of Euclidean motions},
url = {http://eudml.org/doc/38096},
volume = {134},
year = {2009},
}
TY - JOUR
AU - Bakšová, Marta
AU - Dekrét, Anton
TI - On some cohomological properties of the Lie algebra of Euclidean motions
JO - Mathematica Bohemica
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 134
IS - 4
SP - 337
EP - 348
AB - The external derivative $d$ on differential manifolds inspires graded operators on complexes of spaces $\Lambda ^rg^\ast $, $\Lambda ^rg^\ast \otimes g$, $\Lambda ^rg^\ast \otimes g^\ast $ stated by $g^\ast $ dual to a Lie algebra $g$. Cohomological properties of these operators are studied in the case of the Lie algebra $g=se( 3 )$ of the Lie group of Euclidean motions.
LA - eng
KW - Lie group; Lie algebra; dual space; twist; wrench; cohomology; Lie group; Lie algebra; dual space; twist; wrench; cohomology
UR - http://eudml.org/doc/38096
ER -
References
top- Bakša, J., 10.1007/s10492-007-0016-3, Appl. Math., Praha 52 (2007), 303-319. (2007) Zbl1164.53310MR2324729DOI10.1007/s10492-007-0016-3
- Chevallier, D. P., On the foundations of ordinary and generalized rigid body dynamics and the principle of objectivity, Arch. Mech. 56 (2004), 313-353. (2004) Zbl1076.70002MR2088029
- Dekrét, A., Bakša, J., Applications of line objects in robotics, Acta Univ. M. Belii, Ser. Mat. 9 (2001), 29-42. (2001) Zbl1046.70004MR1935681
- Fecko, M., Differential Geometry and Lie Groups for Physicists, Cambridge University Press (2006). (2006) Zbl1121.53001MR2260667
- Hao, K., 10.1016/S0094-114X(97)00121-3, Mech. Mach. Theory 33 (1998), 1063-1084. (1998) MR1653349DOI10.1016/S0094-114X(97)00121-3
- Karger, A., Robot-manipulators as submanifolds, Math. Pannonica 4 (1993), 235-247. (1993) Zbl0793.53011MR1258929
- Karger, A., 10.1007/BF00822203, Acta Appl. Math. 18 (1990), 1-16. (1990) Zbl0699.53013MR1047292DOI10.1007/BF00822203
- Lerbet, J., 10.1016/S0093-6413(00)00138-5, Mech. Res. Commun. 27 (2000), 621-630. (2000) Zbl0987.70002MR1808551DOI10.1016/S0093-6413(00)00138-5
- Selig, J., Geometrical Methods in Robotics, Springer, New York (1996). (1996) Zbl0861.93001MR1411680
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.