Some results about the Henstock-Kurzweil Fourier transform
Francisco J. Mendoza Torres; Juan A. Escamilla Reyna; Salvador Sánchez Perales
Mathematica Bohemica (2009)
- Volume: 134, Issue: 4, page 379-386
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMendoza Torres, Francisco J., Escamilla Reyna, Juan A., and Sánchez Perales, Salvador. "Some results about the Henstock-Kurzweil Fourier transform." Mathematica Bohemica 134.4 (2009): 379-386. <http://eudml.org/doc/38100>.
@article{MendozaTorres2009,
abstract = {We consider the Fourier transform in the space of Henstock-Kurzweil integrable functions. We prove that the classical results related to the Riemann-Lebesgue lemma, existence and continuity are true in appropriate subspaces.},
author = {Mendoza Torres, Francisco J., Escamilla Reyna, Juan A., Sánchez Perales, Salvador},
journal = {Mathematica Bohemica},
keywords = {Fourier transform; Henstock-Kurzweil integral; bounded variation functions; Fourier transform; Henstock-Kurzweil integral; bounded variation function},
language = {eng},
number = {4},
pages = {379-386},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some results about the Henstock-Kurzweil Fourier transform},
url = {http://eudml.org/doc/38100},
volume = {134},
year = {2009},
}
TY - JOUR
AU - Mendoza Torres, Francisco J.
AU - Escamilla Reyna, Juan A.
AU - Sánchez Perales, Salvador
TI - Some results about the Henstock-Kurzweil Fourier transform
JO - Mathematica Bohemica
PY - 2009
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 134
IS - 4
SP - 379
EP - 386
AB - We consider the Fourier transform in the space of Henstock-Kurzweil integrable functions. We prove that the classical results related to the Riemann-Lebesgue lemma, existence and continuity are true in appropriate subspaces.
LA - eng
KW - Fourier transform; Henstock-Kurzweil integral; bounded variation functions; Fourier transform; Henstock-Kurzweil integral; bounded variation function
UR - http://eudml.org/doc/38100
ER -
References
top- Bartle, R. G., A Modern Theory of Integration. Graduate Studies in Mathematics, Vol. 32, American Mathematical Society, Providence, RI (2001). (2001) MR1817647
- Talvila, E., 10.2307/44153018, Real Anal. Exchange 25 (2000), 17-18. (2000) Zbl1014.26014MR1778542DOI10.2307/44153018
- Talvila, E., 10.1215/ijm/1258138475, Ill. J. Math. 46 (2002), 1207-1226. (2002) Zbl1037.42007MR1988259DOI10.1215/ijm/1258138475
- Gordon, R. A., 10.1090/gsm/004/09, American Mathematical Society, Providence, RI (1994). (1994) MR1288751DOI10.1090/gsm/004/09
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.