A third order boundary value problem subject to nonlinear boundary conditions

Gennaro Infante; Paolamaria Pietramala

Mathematica Bohemica (2010)

  • Volume: 135, Issue: 2, page 113-121
  • ISSN: 0862-7959

Abstract

top
Utilizing the theory of fixed point index for compact maps, we establish new results on the existence of positive solutions for a certain third order boundary value problem. The boundary conditions that we study are of nonlocal type, involve Stieltjes integrals and are allowed to be nonlinear.

How to cite

top

Infante, Gennaro, and Pietramala, Paolamaria. "A third order boundary value problem subject to nonlinear boundary conditions." Mathematica Bohemica 135.2 (2010): 113-121. <http://eudml.org/doc/38115>.

@article{Infante2010,
abstract = {Utilizing the theory of fixed point index for compact maps, we establish new results on the existence of positive solutions for a certain third order boundary value problem. The boundary conditions that we study are of nonlocal type, involve Stieltjes integrals and are allowed to be nonlinear.},
author = {Infante, Gennaro, Pietramala, Paolamaria},
journal = {Mathematica Bohemica},
keywords = {positive solution; nonlinear boundary conditions; third order problem; cone; fixed point index; positive solution; nonlinear boundary condition; third order problem; cone; fixed point index},
language = {eng},
number = {2},
pages = {113-121},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A third order boundary value problem subject to nonlinear boundary conditions},
url = {http://eudml.org/doc/38115},
volume = {135},
year = {2010},
}

TY - JOUR
AU - Infante, Gennaro
AU - Pietramala, Paolamaria
TI - A third order boundary value problem subject to nonlinear boundary conditions
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 2
SP - 113
EP - 121
AB - Utilizing the theory of fixed point index for compact maps, we establish new results on the existence of positive solutions for a certain third order boundary value problem. The boundary conditions that we study are of nonlocal type, involve Stieltjes integrals and are allowed to be nonlinear.
LA - eng
KW - positive solution; nonlinear boundary conditions; third order problem; cone; fixed point index; positive solution; nonlinear boundary condition; third order problem; cone; fixed point index
UR - http://eudml.org/doc/38115
ER -

References

top
  1. Anderson, D. R., Davis, J. M., 10.1006/jmaa.2001.7756, J. Math. Anal. Appl. 267 (2002), 135-157. (2002) Zbl1003.34021MR1886821DOI10.1006/jmaa.2001.7756
  2. Amann, H., 10.1137/1018114, SIAM Rev. 18 (1976), 620-709. (1976) Zbl0345.47044MR0415432DOI10.1137/1018114
  3. Cabada, A., Minhós, F., Santos, A. I., 10.1016/j.jmaa.2005.09.065, J. Math. Anal. Appl. 322 (2006), 735-748. (2006) MR2250612DOI10.1016/j.jmaa.2005.09.065
  4. Clark, S., Henderson, J., 10.1090/S0002-9939-06-08368-7, Proc. Amer. Math. Soc. 134 (2006), 3363-3372. (2006) Zbl1120.34010MR2231921DOI10.1090/S0002-9939-06-08368-7
  5. Franco, D., O'Regan, D., Existence of solutions to second order problems with nonlinear boundary conditions, Discrete Contin. Dyn. Syst. suppl. (2005), 273-280. (2005) MR2018125
  6. Graef, J. R., Webb, J. R. L., Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal. 71 (2009), 1542-1551. (2009) Zbl1189.34034MR2524369
  7. Graef, J. R., Yang, B., Positive solutions of a third order nonlocal boundary value problem, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 89-97. (2008) Zbl1153.34014MR2375585
  8. Graef, J. R., Henderson, J., Yang, B., Existence and nonexistence of positive solutions of an n -th order nonlocal boundary value problem, Proc. Dynam. Systems Appl. 5 (2008), 186-191. (2008) Zbl1203.34026MR2468138
  9. Guidotti, P., Merino, S., Gradual loss of positivity and hidden invariant cones in a scalar heat equation, Differ. Int. Equations 13 (2000), 1551-1568. (2000) Zbl0983.35013MR1787081
  10. Guo, D., Lakshmikantham, V., Nonlinear problems in abstract cones, Academic Press, Boston (1988). (1988) Zbl0661.47045MR0959889
  11. Infante, G., 10.3934/dcdss.2008.1.99, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 99-106. (2008) MR2375586DOI10.3934/dcdss.2008.1.99
  12. Infante, G., Positive solutions of differential equations with nonlinear boundary conditions, Discrete Contin. Dyn. Syst. suppl. (2003), 432-438. (2003) Zbl1064.34014MR2018144
  13. Infante, G., Nonzero solutions of second order problems subject to nonlinear BCs, Dynamic systems and applications. Vol. 5, 222-226, Dynamic, Atlanta, GA (2008). (2008) Zbl1203.34030MR2468144
  14. Infante, G., Nonlocal boundary value problems with two nonlinear boundary conditions, Commun. Appl. Anal. 12 (2008), 279-288. (2008) Zbl1198.34025MR2499284
  15. Infante, G., Pietramala, P., 10.1016/j.na.2008.11.095, Nonlinear Anal. 71 (2009), 1301-1310. (2009) Zbl1169.45001MR2527550DOI10.1016/j.na.2008.11.095
  16. Infante, G., Pietramala, P., A cantilever equation with nonlinear boundary conditions, Electron. J. Qual. Theory Differ. Equ., Special Edition I (2009), 14 pp. (2009) Zbl1201.34041MR2558840
  17. Infante, G., Webb, J. R. L., 10.1007/s00030-005-0039-y, NoDEA, Nonlinear Differential Equations Appl. 13 (2006), 249-261. (2006) Zbl1112.34017MR2243714DOI10.1007/s00030-005-0039-y
  18. Infante, G., Webb, J. R. L., 10.1017/S0013091505000532, Proc. Edinb. Math. Soc. 49 (2006), 637-656. (2006) MR2266153DOI10.1017/S0013091505000532
  19. Kong, L., Wang, J., 10.1016/S0362-546X(99)00143-1, Nonlinear Anal. 42 (2000), 1327-1333. (2000) Zbl0961.34012MR1784078DOI10.1016/S0362-546X(99)00143-1
  20. Krasnosel'skiǐ, M. A., Zabreǐko, P. P., Geometrical Methods of Nonlinear Analysis, Springer, Berlin (1984). (1984) MR0736839
  21. Lan, K. Q., 10.1112/S002461070100206X, J. London Math. Soc. 63 (2001), 690-704. (2001) Zbl1032.34019MR1825983DOI10.1112/S002461070100206X
  22. Minhós, F. M., 10.1016/j.jmaa.2007.08.005, J. Math. Anal. Appl. 339 (2008), 1342-1353. (2008) Zbl1144.34009MR2377091DOI10.1016/j.jmaa.2007.08.005
  23. Palamides, P. K., Infante, G., Pietramala, P., 10.1016/j.aml.2009.03.014, Appl. Math. Lett. 22 (2009), 1444-1450. (2009) Zbl1173.34311MR2536830DOI10.1016/j.aml.2009.03.014
  24. Palamides, P. K., Palamides, A. P., A third-order 3-point BVP. Applying Krasnosel'skiǐ's theorem on the plane without a Green's function, Electron. J. Qual. Theory Differ. Equ. (2008), 15 pp. (2008) MR2395531
  25. Palamides, A. P., Smyrlis, G., Positive solutions to a singular third-order three-point boundary value problem with an indefinitely signed Green's function, Nonlinear Anal. 68 (2008), 2104-2118. (2008) Zbl1153.34016MR2388769
  26. Wang, Y., Ge, W., 10.1016/j.camwa.2007.01.002, Comput. Math. Appl. 53 (2007), 144-154. (2007) Zbl1134.34009MR2321687DOI10.1016/j.camwa.2007.01.002
  27. Webb, J. R. L., Multiple positive solutions of some nonlinear heat flow problems, Discrete Contin. Dyn. Syst. suppl. (2005), 895-903. (2005) Zbl1161.34007MR2192752
  28. Webb, J. R. L., 10.1016/j.na.2005.02.055, Nonlinear Anal. 63 (2005), 672-685. (2005) Zbl1153.34320MR2188140DOI10.1016/j.na.2005.02.055
  29. Webb, J. R. L., Infante, G., 10.1112/S0024610706023179, J. London Math. Soc. 74 (2006), 673-693. (2006) Zbl1115.34028MR2286439DOI10.1112/S0024610706023179
  30. Webb, J. R. L., Lan, K. Q., Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type, Topol. Methods Nonlinear Anal. 27 (2006), 91-116. (2006) Zbl1146.34020MR2236412
  31. Yang, B., Positive solutions of a third-order three-point boundary-value problem, Electron. J. Differ. Equations (2008), 10 pp. (2008) Zbl1172.34317MR2430896
  32. Yang, Z., 10.1016/j.jmaa.2005.09.002, J. Math. Anal. Appl. 321 (2006), 751-765. (2006) Zbl1106.34014MR2241153DOI10.1016/j.jmaa.2005.09.002
  33. Yao, Q., 10.1016/j.jmaa.2008.12.057, J. Math. Anal. Appl. 354 (2009), 207-212. (2009) Zbl1169.34314MR2510431DOI10.1016/j.jmaa.2008.12.057

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.