A third order boundary value problem subject to nonlinear boundary conditions
Gennaro Infante; Paolamaria Pietramala
Mathematica Bohemica (2010)
- Volume: 135, Issue: 2, page 113-121
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topInfante, Gennaro, and Pietramala, Paolamaria. "A third order boundary value problem subject to nonlinear boundary conditions." Mathematica Bohemica 135.2 (2010): 113-121. <http://eudml.org/doc/38115>.
@article{Infante2010,
abstract = {Utilizing the theory of fixed point index for compact maps, we establish new results on the existence of positive solutions for a certain third order boundary value problem. The boundary conditions that we study are of nonlocal type, involve Stieltjes integrals and are allowed to be nonlinear.},
author = {Infante, Gennaro, Pietramala, Paolamaria},
journal = {Mathematica Bohemica},
keywords = {positive solution; nonlinear boundary conditions; third order problem; cone; fixed point index; positive solution; nonlinear boundary condition; third order problem; cone; fixed point index},
language = {eng},
number = {2},
pages = {113-121},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A third order boundary value problem subject to nonlinear boundary conditions},
url = {http://eudml.org/doc/38115},
volume = {135},
year = {2010},
}
TY - JOUR
AU - Infante, Gennaro
AU - Pietramala, Paolamaria
TI - A third order boundary value problem subject to nonlinear boundary conditions
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 2
SP - 113
EP - 121
AB - Utilizing the theory of fixed point index for compact maps, we establish new results on the existence of positive solutions for a certain third order boundary value problem. The boundary conditions that we study are of nonlocal type, involve Stieltjes integrals and are allowed to be nonlinear.
LA - eng
KW - positive solution; nonlinear boundary conditions; third order problem; cone; fixed point index; positive solution; nonlinear boundary condition; third order problem; cone; fixed point index
UR - http://eudml.org/doc/38115
ER -
References
top- Anderson, D. R., Davis, J. M., 10.1006/jmaa.2001.7756, J. Math. Anal. Appl. 267 (2002), 135-157. (2002) Zbl1003.34021MR1886821DOI10.1006/jmaa.2001.7756
- Amann, H., 10.1137/1018114, SIAM Rev. 18 (1976), 620-709. (1976) Zbl0345.47044MR0415432DOI10.1137/1018114
- Cabada, A., Minhós, F., Santos, A. I., 10.1016/j.jmaa.2005.09.065, J. Math. Anal. Appl. 322 (2006), 735-748. (2006) MR2250612DOI10.1016/j.jmaa.2005.09.065
- Clark, S., Henderson, J., 10.1090/S0002-9939-06-08368-7, Proc. Amer. Math. Soc. 134 (2006), 3363-3372. (2006) Zbl1120.34010MR2231921DOI10.1090/S0002-9939-06-08368-7
- Franco, D., O'Regan, D., Existence of solutions to second order problems with nonlinear boundary conditions, Discrete Contin. Dyn. Syst. suppl. (2005), 273-280. (2005) MR2018125
- Graef, J. R., Webb, J. R. L., Third order boundary value problems with nonlocal boundary conditions, Nonlinear Anal. 71 (2009), 1542-1551. (2009) Zbl1189.34034MR2524369
- Graef, J. R., Yang, B., Positive solutions of a third order nonlocal boundary value problem, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 89-97. (2008) Zbl1153.34014MR2375585
- Graef, J. R., Henderson, J., Yang, B., Existence and nonexistence of positive solutions of an -th order nonlocal boundary value problem, Proc. Dynam. Systems Appl. 5 (2008), 186-191. (2008) Zbl1203.34026MR2468138
- Guidotti, P., Merino, S., Gradual loss of positivity and hidden invariant cones in a scalar heat equation, Differ. Int. Equations 13 (2000), 1551-1568. (2000) Zbl0983.35013MR1787081
- Guo, D., Lakshmikantham, V., Nonlinear problems in abstract cones, Academic Press, Boston (1988). (1988) Zbl0661.47045MR0959889
- Infante, G., 10.3934/dcdss.2008.1.99, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 99-106. (2008) MR2375586DOI10.3934/dcdss.2008.1.99
- Infante, G., Positive solutions of differential equations with nonlinear boundary conditions, Discrete Contin. Dyn. Syst. suppl. (2003), 432-438. (2003) Zbl1064.34014MR2018144
- Infante, G., Nonzero solutions of second order problems subject to nonlinear BCs, Dynamic systems and applications. Vol. 5, 222-226, Dynamic, Atlanta, GA (2008). (2008) Zbl1203.34030MR2468144
- Infante, G., Nonlocal boundary value problems with two nonlinear boundary conditions, Commun. Appl. Anal. 12 (2008), 279-288. (2008) Zbl1198.34025MR2499284
- Infante, G., Pietramala, P., 10.1016/j.na.2008.11.095, Nonlinear Anal. 71 (2009), 1301-1310. (2009) Zbl1169.45001MR2527550DOI10.1016/j.na.2008.11.095
- Infante, G., Pietramala, P., A cantilever equation with nonlinear boundary conditions, Electron. J. Qual. Theory Differ. Equ., Special Edition I (2009), 14 pp. (2009) Zbl1201.34041MR2558840
- Infante, G., Webb, J. R. L., 10.1007/s00030-005-0039-y, NoDEA, Nonlinear Differential Equations Appl. 13 (2006), 249-261. (2006) Zbl1112.34017MR2243714DOI10.1007/s00030-005-0039-y
- Infante, G., Webb, J. R. L., 10.1017/S0013091505000532, Proc. Edinb. Math. Soc. 49 (2006), 637-656. (2006) MR2266153DOI10.1017/S0013091505000532
- Kong, L., Wang, J., 10.1016/S0362-546X(99)00143-1, Nonlinear Anal. 42 (2000), 1327-1333. (2000) Zbl0961.34012MR1784078DOI10.1016/S0362-546X(99)00143-1
- Krasnosel'skiǐ, M. A., Zabreǐko, P. P., Geometrical Methods of Nonlinear Analysis, Springer, Berlin (1984). (1984) MR0736839
- Lan, K. Q., 10.1112/S002461070100206X, J. London Math. Soc. 63 (2001), 690-704. (2001) Zbl1032.34019MR1825983DOI10.1112/S002461070100206X
- Minhós, F. M., 10.1016/j.jmaa.2007.08.005, J. Math. Anal. Appl. 339 (2008), 1342-1353. (2008) Zbl1144.34009MR2377091DOI10.1016/j.jmaa.2007.08.005
- Palamides, P. K., Infante, G., Pietramala, P., 10.1016/j.aml.2009.03.014, Appl. Math. Lett. 22 (2009), 1444-1450. (2009) Zbl1173.34311MR2536830DOI10.1016/j.aml.2009.03.014
- Palamides, P. K., Palamides, A. P., A third-order 3-point BVP. Applying Krasnosel'skiǐ's theorem on the plane without a Green's function, Electron. J. Qual. Theory Differ. Equ. (2008), 15 pp. (2008) MR2395531
- Palamides, A. P., Smyrlis, G., Positive solutions to a singular third-order three-point boundary value problem with an indefinitely signed Green's function, Nonlinear Anal. 68 (2008), 2104-2118. (2008) Zbl1153.34016MR2388769
- Wang, Y., Ge, W., 10.1016/j.camwa.2007.01.002, Comput. Math. Appl. 53 (2007), 144-154. (2007) Zbl1134.34009MR2321687DOI10.1016/j.camwa.2007.01.002
- Webb, J. R. L., Multiple positive solutions of some nonlinear heat flow problems, Discrete Contin. Dyn. Syst. suppl. (2005), 895-903. (2005) Zbl1161.34007MR2192752
- Webb, J. R. L., 10.1016/j.na.2005.02.055, Nonlinear Anal. 63 (2005), 672-685. (2005) Zbl1153.34320MR2188140DOI10.1016/j.na.2005.02.055
- Webb, J. R. L., Infante, G., 10.1112/S0024610706023179, J. London Math. Soc. 74 (2006), 673-693. (2006) Zbl1115.34028MR2286439DOI10.1112/S0024610706023179
- Webb, J. R. L., Lan, K. Q., Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type, Topol. Methods Nonlinear Anal. 27 (2006), 91-116. (2006) Zbl1146.34020MR2236412
- Yang, B., Positive solutions of a third-order three-point boundary-value problem, Electron. J. Differ. Equations (2008), 10 pp. (2008) Zbl1172.34317MR2430896
- Yang, Z., 10.1016/j.jmaa.2005.09.002, J. Math. Anal. Appl. 321 (2006), 751-765. (2006) Zbl1106.34014MR2241153DOI10.1016/j.jmaa.2005.09.002
- Yao, Q., 10.1016/j.jmaa.2008.12.057, J. Math. Anal. Appl. 354 (2009), 207-212. (2009) Zbl1169.34314MR2510431DOI10.1016/j.jmaa.2008.12.057
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.