Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale

Christopher S. Goodrich

Commentationes Mathematicae Universitatis Carolinae (2013)

  • Volume: 54, Issue: 4, page 509-525
  • ISSN: 0010-2628

Abstract

top
We consider the existence of at least one positive solution to the dynamic boundary value problem - y Δ Δ ( t ) = λ f ( t , y ( t ) ) , t [ 0 , T ] 𝕋 y ( 0 ) = τ 1 τ 2 F 1 ( s , y ( s ) ) Δ s y σ 2 ( T ) = τ 3 τ 4 F 2 ( s , y ( s ) ) Δ s , where 𝕋 is an arbitrary time scale with 0 < τ 1 < τ 2 < σ 2 ( T ) and 0 < τ 3 < τ 4 < σ 2 ( T ) satisfying τ 1 , τ 2 , τ 3 , τ 4 𝕋 , and where the boundary conditions at t = 0 and t = σ 2 ( T ) can be both nonlinear and nonlocal. This extends some recent results on second-order semipositone dynamic boundary value problems, and we illustrate these extensions with some examples.

How to cite

top

Goodrich, Christopher S.. "Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale." Commentationes Mathematicae Universitatis Carolinae 54.4 (2013): 509-525. <http://eudml.org/doc/260748>.

@article{Goodrich2013,
abstract = {We consider the existence of at least one positive solution to the dynamic boundary value problem \begin\{align*\} -y^\{\Delta \Delta \}(t) & = \lambda f(t,y(t))\text\{, \}t\in [0,T]\_\{\mathbb \{T\}\} y(0) & = \int \_\{\tau \_1\}^\{\tau \_2\}F\_1(s,y(s)) \Delta s y\left(\sigma ^2(T)\right) & = \int \_\{\tau \_3\}^\{\tau \_4\}F\_2(s,y(s)) \Delta s, \end\{align*\} where $\mathbb \{T\}$ is an arbitrary time scale with $0<\tau _1<\tau _2<\sigma ^2(T)$ and $0<\tau _3<\tau _4<\sigma ^2(T)$ satisfying $\tau _1$, $\tau _2$, $\tau _3$, $\tau _4\in \mathbb \{T\}$, and where the boundary conditions at $t=0$ and $t=\sigma ^2(T)$ can be both nonlinear and nonlocal. This extends some recent results on second-order semipositone dynamic boundary value problems, and we illustrate these extensions with some examples.},
author = {Goodrich, Christopher S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {time scales; integral boundary condition; second-order boundary value problem; cone; positive solution; second-order boundary value problem; time scale; integral boundary condition; positive solution},
language = {eng},
number = {4},
pages = {509-525},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale},
url = {http://eudml.org/doc/260748},
volume = {54},
year = {2013},
}

TY - JOUR
AU - Goodrich, Christopher S.
TI - Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 4
SP - 509
EP - 525
AB - We consider the existence of at least one positive solution to the dynamic boundary value problem \begin{align*} -y^{\Delta \Delta }(t) & = \lambda f(t,y(t))\text{, }t\in [0,T]_{\mathbb {T}} y(0) & = \int _{\tau _1}^{\tau _2}F_1(s,y(s)) \Delta s y\left(\sigma ^2(T)\right) & = \int _{\tau _3}^{\tau _4}F_2(s,y(s)) \Delta s, \end{align*} where $\mathbb {T}$ is an arbitrary time scale with $0<\tau _1<\tau _2<\sigma ^2(T)$ and $0<\tau _3<\tau _4<\sigma ^2(T)$ satisfying $\tau _1$, $\tau _2$, $\tau _3$, $\tau _4\in \mathbb {T}$, and where the boundary conditions at $t=0$ and $t=\sigma ^2(T)$ can be both nonlinear and nonlocal. This extends some recent results on second-order semipositone dynamic boundary value problems, and we illustrate these extensions with some examples.
LA - eng
KW - time scales; integral boundary condition; second-order boundary value problem; cone; positive solution; second-order boundary value problem; time scale; integral boundary condition; positive solution
UR - http://eudml.org/doc/260748
ER -

References

top
  1. Agarwal R., Meehan M., O'Regan D., 10.1017/CBO9780511543005.008, Cambridge University Press, Cambridge, 2001. Zbl1159.54001MR1825411DOI10.1017/CBO9780511543005.008
  2. Anderson D.R., Second-order n -point problems on time scales with changing-sign nonlinearity, Adv. Dynamical Sys. Appl. 1 (2006), 17–27. Zbl1119.34310MR2287632
  3. Anderson D.R., 10.1080/10236190701736682, J. Difference Equ. Appl. 14 (2008), 657–666. Zbl1158.34006MR2417015DOI10.1080/10236190701736682
  4. Anderson D.R., Zhai C., 10.1016/j.amc.2009.11.010, Appl. Math. Comput. 215 (2010), 3713–3720. Zbl1188.34119MR2578954DOI10.1016/j.amc.2009.11.010
  5. Anuradha V., Hai D.D., Shivaji R., 10.1090/S0002-9939-96-03256-X, Proc. Amer. Math. Soc. 124 (1996), 757–763. MR1317029DOI10.1090/S0002-9939-96-03256-X
  6. Boucherif A., 10.1016/j.na.2007.12.007, Nonlinear Anal. 70 (2009), 364–371. Zbl1169.34310MR2468243DOI10.1016/j.na.2007.12.007
  7. Bohner M., Peterson A.C., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001. Zbl0978.39001MR1843232
  8. Dahal R., Positive solutions of semipositone singular Dirichlet dynamic boundary value problems, Nonlinear Dyn. Syst. Theory 9 (2009), 361–374. Zbl1205.34128MR2590764
  9. Dahal R., Positive solutions for a second-order, singular semipositone dynamic boundary value problem, Int. J. Dyn. Syst. Differ. Equ. 3 (2011), 178–188. Zbl1214.34090MR2797048
  10. Erbe L.H., Peterson A.C., 10.1016/S0895-7177(00)00154-0, Math. Comput. Modelling 32 (2000), 571–585. Zbl0963.34020MR1791165DOI10.1016/S0895-7177(00)00154-0
  11. Feng M., 10.1016/j.aml.2011.03.023, Appl. Math. Lett. 24 (2011), 1419–1427. Zbl1221.34062MR2793645DOI10.1016/j.aml.2011.03.023
  12. Goodrich C.S., 10.1016/j.amc.2010.11.029, Appl. Math. Comput. 217 (2011), 4740–4753. Zbl1215.39003MR2745153DOI10.1016/j.amc.2010.11.029
  13. Goodrich C.S., Existence of a positive solution to a first-order p -Laplacian BVP on a time scale, Nonlinear Anal. 74 (2011), 1926–1936. Zbl1236.34112MR2764390
  14. Goodrich C.S., 10.1016/j.camwa.2010.10.041, Comput. Math. Appl. 61 (2011), 191–202. Zbl1211.39002MR2754129DOI10.1016/j.camwa.2010.10.041
  15. Goodrich C.S., 10.1016/j.jmaa.2011.06.022, J. Math. Anal. Appl. 385 (2012), 111–124. Zbl1236.39008MR2832079DOI10.1016/j.jmaa.2011.06.022
  16. Goodrich C.S., 10.1016/j.aml.2011.08.005, Appl. Math. Lett. 25 (2012), 157–162. MR2843745DOI10.1016/j.aml.2011.08.005
  17. Goodrich C.S., 10.1016/j.na.2011.08.044, Nonlinear Anal. 75 (2012), 417–432. MR2846811DOI10.1016/j.na.2011.08.044
  18. Goodrich C.S., Nonlocal systems of BVPs with asymptotically superlinear boundary conditions, Comment. Math. Univ. Carolin. 53 (2012), 79–97. Zbl1249.34054MR2880912
  19. Goodrich C.S., 10.1080/10236198.2010.503240, J. Difference Equ. Appl. 18 (2012), 397–415. Zbl1253.26010MR2901829DOI10.1080/10236198.2010.503240
  20. Goodrich C.S., On nonlocal BVPs with boundary conditions with asymptotically sublinear or superlinear growth, Math. Nachr. 285 (2012), 1404–1421. MR2959967
  21. Goodrich C.S., On discrete fractional boundary value problems with nonlocal, nonlinear boundary conditions, Commun. Appl. Anal. 16 (2012), 433–446. MR3051308
  22. Goodrich C.S., 10.2298/AADM120329010G, Appl. Anal. Discrete Math. 6 (2012), 174–193. MR3012670DOI10.2298/AADM120329010G
  23. Goodrich C.S., 10.1016/j.na.2012.07.023, Nonlinear Anal. 76 (2013), 58–67. Zbl1264.34030MR2974249DOI10.1016/j.na.2012.07.023
  24. Goodrich C.S., 10.1007/s00013-012-0463-2, Arch. Math. (Basel) 99 (2012), 509–518. Zbl1263.26016MR3001554DOI10.1007/s00013-012-0463-2
  25. Goodrich C.S., On semipositone discrete fractional boundary value problems with nonlocal boundary conditions, J. Difference Equ. Appl., doi: 10.1080/10236198.2013.775259. 
  26. J. Graef, L. Kong, 10.1016/j.aml.2008.11.008, Appl. Math. Lett. 22 (2009), 1154–1160. Zbl1173.34313MR2532528DOI10.1016/j.aml.2008.11.008
  27. Hilger S., 10.1007/BF03323153, Results Math. 18 (1990), 18–56. Zbl0722.39001MR1066641DOI10.1007/BF03323153
  28. Jia M., Liu X., 10.1016/j.camwa.2011.03.026, Comput. Math. Appl. 62 (2011), 1405–1412. Zbl1235.34016MR2824728DOI10.1016/j.camwa.2011.03.026
  29. Infante G., Nonlocal boundary value problems with two nonlinear boundary conditions, Commun. Appl. Anal. 12 (2008), 279–288. Zbl1198.34025MR2499284
  30. Infante G., Pietramala P., 10.1016/j.na.2008.11.095, Nonlinear Anal. 71 (2009), 1301–1310. Zbl1169.45001MR2527550DOI10.1016/j.na.2008.11.095
  31. Infante G., Pietramala P., Eigenvalues and non-negative solutions of a system with nonlocal BCs, Nonlinear Stud. 16 (2009), 187–196. Zbl1184.34027MR2527180
  32. Infante G., Pietramala P., A third order boundary value problem subject to nonlinear boundary conditions, Math. Bohem. 135 (2010), 113–121. Zbl1224.34036MR2723078
  33. G. Infante, F. Minhós, P. Pietramala, 10.1016/j.cnsns.2012.05.025, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4952–4960. MR2960289DOI10.1016/j.cnsns.2012.05.025
  34. Sun J.P., Li W.T., Existence of positive solutions to semipositone Dirichlet BVPs on time scales, Dynam. Systems Appl. 16 (2007), 571–578. MR2356340
  35. Sun J.P., Li W.T., Solutions and positive solutions to semipositone Dirichlet BVPs on time scales, Dynam. Systems Appl. 17 (2008), 303–312. MR2436566

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.