Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale
Commentationes Mathematicae Universitatis Carolinae (2013)
- Volume: 54, Issue: 4, page 509-525
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGoodrich, Christopher S.. "Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale." Commentationes Mathematicae Universitatis Carolinae 54.4 (2013): 509-525. <http://eudml.org/doc/260748>.
@article{Goodrich2013,
abstract = {We consider the existence of at least one positive solution to the dynamic boundary value problem \begin\{align*\} -y^\{\Delta \Delta \}(t) & = \lambda f(t,y(t))\text\{, \}t\in [0,T]\_\{\mathbb \{T\}\} y(0) & = \int \_\{\tau \_1\}^\{\tau \_2\}F\_1(s,y(s)) \Delta s y\left(\sigma ^2(T)\right) & = \int \_\{\tau \_3\}^\{\tau \_4\}F\_2(s,y(s)) \Delta s, \end\{align*\}
where $\mathbb \{T\}$ is an arbitrary time scale with $0<\tau _1<\tau _2<\sigma ^2(T)$ and $0<\tau _3<\tau _4<\sigma ^2(T)$ satisfying $\tau _1$, $\tau _2$, $\tau _3$, $\tau _4\in \mathbb \{T\}$, and where the boundary conditions at $t=0$ and $t=\sigma ^2(T)$ can be both nonlinear and nonlocal. This extends some recent results on second-order semipositone dynamic boundary value problems, and we illustrate these extensions with some examples.},
author = {Goodrich, Christopher S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {time scales; integral boundary condition; second-order boundary value problem; cone; positive solution; second-order boundary value problem; time scale; integral boundary condition; positive solution},
language = {eng},
number = {4},
pages = {509-525},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale},
url = {http://eudml.org/doc/260748},
volume = {54},
year = {2013},
}
TY - JOUR
AU - Goodrich, Christopher S.
TI - Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2013
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 54
IS - 4
SP - 509
EP - 525
AB - We consider the existence of at least one positive solution to the dynamic boundary value problem \begin{align*} -y^{\Delta \Delta }(t) & = \lambda f(t,y(t))\text{, }t\in [0,T]_{\mathbb {T}} y(0) & = \int _{\tau _1}^{\tau _2}F_1(s,y(s)) \Delta s y\left(\sigma ^2(T)\right) & = \int _{\tau _3}^{\tau _4}F_2(s,y(s)) \Delta s, \end{align*}
where $\mathbb {T}$ is an arbitrary time scale with $0<\tau _1<\tau _2<\sigma ^2(T)$ and $0<\tau _3<\tau _4<\sigma ^2(T)$ satisfying $\tau _1$, $\tau _2$, $\tau _3$, $\tau _4\in \mathbb {T}$, and where the boundary conditions at $t=0$ and $t=\sigma ^2(T)$ can be both nonlinear and nonlocal. This extends some recent results on second-order semipositone dynamic boundary value problems, and we illustrate these extensions with some examples.
LA - eng
KW - time scales; integral boundary condition; second-order boundary value problem; cone; positive solution; second-order boundary value problem; time scale; integral boundary condition; positive solution
UR - http://eudml.org/doc/260748
ER -
References
top- Agarwal R., Meehan M., O'Regan D., 10.1017/CBO9780511543005.008, Cambridge University Press, Cambridge, 2001. Zbl1159.54001MR1825411DOI10.1017/CBO9780511543005.008
- Anderson D.R., Second-order -point problems on time scales with changing-sign nonlinearity, Adv. Dynamical Sys. Appl. 1 (2006), 17–27. Zbl1119.34310MR2287632
- Anderson D.R., 10.1080/10236190701736682, J. Difference Equ. Appl. 14 (2008), 657–666. Zbl1158.34006MR2417015DOI10.1080/10236190701736682
- Anderson D.R., Zhai C., 10.1016/j.amc.2009.11.010, Appl. Math. Comput. 215 (2010), 3713–3720. Zbl1188.34119MR2578954DOI10.1016/j.amc.2009.11.010
- Anuradha V., Hai D.D., Shivaji R., 10.1090/S0002-9939-96-03256-X, Proc. Amer. Math. Soc. 124 (1996), 757–763. MR1317029DOI10.1090/S0002-9939-96-03256-X
- Boucherif A., 10.1016/j.na.2007.12.007, Nonlinear Anal. 70 (2009), 364–371. Zbl1169.34310MR2468243DOI10.1016/j.na.2007.12.007
- Bohner M., Peterson A.C., Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, 2001. Zbl0978.39001MR1843232
- Dahal R., Positive solutions of semipositone singular Dirichlet dynamic boundary value problems, Nonlinear Dyn. Syst. Theory 9 (2009), 361–374. Zbl1205.34128MR2590764
- Dahal R., Positive solutions for a second-order, singular semipositone dynamic boundary value problem, Int. J. Dyn. Syst. Differ. Equ. 3 (2011), 178–188. Zbl1214.34090MR2797048
- Erbe L.H., Peterson A.C., 10.1016/S0895-7177(00)00154-0, Math. Comput. Modelling 32 (2000), 571–585. Zbl0963.34020MR1791165DOI10.1016/S0895-7177(00)00154-0
- Feng M., 10.1016/j.aml.2011.03.023, Appl. Math. Lett. 24 (2011), 1419–1427. Zbl1221.34062MR2793645DOI10.1016/j.aml.2011.03.023
- Goodrich C.S., 10.1016/j.amc.2010.11.029, Appl. Math. Comput. 217 (2011), 4740–4753. Zbl1215.39003MR2745153DOI10.1016/j.amc.2010.11.029
- Goodrich C.S., Existence of a positive solution to a first-order -Laplacian BVP on a time scale, Nonlinear Anal. 74 (2011), 1926–1936. Zbl1236.34112MR2764390
- Goodrich C.S., 10.1016/j.camwa.2010.10.041, Comput. Math. Appl. 61 (2011), 191–202. Zbl1211.39002MR2754129DOI10.1016/j.camwa.2010.10.041
- Goodrich C.S., 10.1016/j.jmaa.2011.06.022, J. Math. Anal. Appl. 385 (2012), 111–124. Zbl1236.39008MR2832079DOI10.1016/j.jmaa.2011.06.022
- Goodrich C.S., 10.1016/j.aml.2011.08.005, Appl. Math. Lett. 25 (2012), 157–162. MR2843745DOI10.1016/j.aml.2011.08.005
- Goodrich C.S., 10.1016/j.na.2011.08.044, Nonlinear Anal. 75 (2012), 417–432. MR2846811DOI10.1016/j.na.2011.08.044
- Goodrich C.S., Nonlocal systems of BVPs with asymptotically superlinear boundary conditions, Comment. Math. Univ. Carolin. 53 (2012), 79–97. Zbl1249.34054MR2880912
- Goodrich C.S., 10.1080/10236198.2010.503240, J. Difference Equ. Appl. 18 (2012), 397–415. Zbl1253.26010MR2901829DOI10.1080/10236198.2010.503240
- Goodrich C.S., On nonlocal BVPs with boundary conditions with asymptotically sublinear or superlinear growth, Math. Nachr. 285 (2012), 1404–1421. MR2959967
- Goodrich C.S., On discrete fractional boundary value problems with nonlocal, nonlinear boundary conditions, Commun. Appl. Anal. 16 (2012), 433–446. MR3051308
- Goodrich C.S., 10.2298/AADM120329010G, Appl. Anal. Discrete Math. 6 (2012), 174–193. MR3012670DOI10.2298/AADM120329010G
- Goodrich C.S., 10.1016/j.na.2012.07.023, Nonlinear Anal. 76 (2013), 58–67. Zbl1264.34030MR2974249DOI10.1016/j.na.2012.07.023
- Goodrich C.S., 10.1007/s00013-012-0463-2, Arch. Math. (Basel) 99 (2012), 509–518. Zbl1263.26016MR3001554DOI10.1007/s00013-012-0463-2
- Goodrich C.S., On semipositone discrete fractional boundary value problems with nonlocal boundary conditions, J. Difference Equ. Appl., doi: 10.1080/10236198.2013.775259.
- J. Graef, L. Kong, 10.1016/j.aml.2008.11.008, Appl. Math. Lett. 22 (2009), 1154–1160. Zbl1173.34313MR2532528DOI10.1016/j.aml.2008.11.008
- Hilger S., 10.1007/BF03323153, Results Math. 18 (1990), 18–56. Zbl0722.39001MR1066641DOI10.1007/BF03323153
- Jia M., Liu X., 10.1016/j.camwa.2011.03.026, Comput. Math. Appl. 62 (2011), 1405–1412. Zbl1235.34016MR2824728DOI10.1016/j.camwa.2011.03.026
- Infante G., Nonlocal boundary value problems with two nonlinear boundary conditions, Commun. Appl. Anal. 12 (2008), 279–288. Zbl1198.34025MR2499284
- Infante G., Pietramala P., 10.1016/j.na.2008.11.095, Nonlinear Anal. 71 (2009), 1301–1310. Zbl1169.45001MR2527550DOI10.1016/j.na.2008.11.095
- Infante G., Pietramala P., Eigenvalues and non-negative solutions of a system with nonlocal BCs, Nonlinear Stud. 16 (2009), 187–196. Zbl1184.34027MR2527180
- Infante G., Pietramala P., A third order boundary value problem subject to nonlinear boundary conditions, Math. Bohem. 135 (2010), 113–121. Zbl1224.34036MR2723078
- G. Infante, F. Minhós, P. Pietramala, 10.1016/j.cnsns.2012.05.025, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4952–4960. MR2960289DOI10.1016/j.cnsns.2012.05.025
- Sun J.P., Li W.T., Existence of positive solutions to semipositone Dirichlet BVPs on time scales, Dynam. Systems Appl. 16 (2007), 571–578. MR2356340
- Sun J.P., Li W.T., Solutions and positive solutions to semipositone Dirichlet BVPs on time scales, Dynam. Systems Appl. 17 (2008), 303–312. MR2436566
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.