The local metric dimension of a graph
Futaba Okamoto; Bryan Phinezy; Ping Zhang
Mathematica Bohemica (2010)
- Volume: 135, Issue: 3, page 239-255
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topOkamoto, Futaba, Phinezy, Bryan, and Zhang, Ping. "The local metric dimension of a graph." Mathematica Bohemica 135.3 (2010): 239-255. <http://eudml.org/doc/38128>.
@article{Okamoto2010,
abstract = {For an ordered set $W= \lbrace w_1,w_2,\ldots ,w_k\rbrace $ of $k$ distinct vertices in a nontrivial connected graph $G$, the metric code of a vertex $v$ of $G$ with respect to $W$ is the $k$-vector \[ \mathop \{\rm code\}(v)= ( d(v,w\_1),d(v,w\_2),\cdots ,d(v,w\_k) ) \]
where $d(v,w_i)$ is the distance between $v$ and $w_i$ for $1\le i\le k$. The set $W$ is a local metric set of $G$ if $\mathop \{\rm code\}(u)\ne \mathop \{\rm code\}(v)$ for every pair $u,v$ of adjacent vertices of $G$. The minimum positive integer $k$ for which $G$ has a local metric $k$-set is the local metric dimension $\mathop \{\rm lmd\}(G)$ of $G$. A local metric set of $G$ of cardinality $\mathop \{\rm lmd\}(G)$ is a local metric basis of $G$. We characterize all nontrivial connected graphs of order $n$ having local metric dimension $1$, $n-2$, or $n-1$ and establish sharp bounds for the local metric dimension of a graph in terms of well-known graphical parameters. Several realization results are presented along with other results on the number of local metric bases of a connected graph.},
author = {Okamoto, Futaba, Phinezy, Bryan, Zhang, Ping},
journal = {Mathematica Bohemica},
keywords = {distance; local metric set; local metric dimension; distance; local metric set; local metric dimension},
language = {eng},
number = {3},
pages = {239-255},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The local metric dimension of a graph},
url = {http://eudml.org/doc/38128},
volume = {135},
year = {2010},
}
TY - JOUR
AU - Okamoto, Futaba
AU - Phinezy, Bryan
AU - Zhang, Ping
TI - The local metric dimension of a graph
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 3
SP - 239
EP - 255
AB - For an ordered set $W= \lbrace w_1,w_2,\ldots ,w_k\rbrace $ of $k$ distinct vertices in a nontrivial connected graph $G$, the metric code of a vertex $v$ of $G$ with respect to $W$ is the $k$-vector \[ \mathop {\rm code}(v)= ( d(v,w_1),d(v,w_2),\cdots ,d(v,w_k) ) \]
where $d(v,w_i)$ is the distance between $v$ and $w_i$ for $1\le i\le k$. The set $W$ is a local metric set of $G$ if $\mathop {\rm code}(u)\ne \mathop {\rm code}(v)$ for every pair $u,v$ of adjacent vertices of $G$. The minimum positive integer $k$ for which $G$ has a local metric $k$-set is the local metric dimension $\mathop {\rm lmd}(G)$ of $G$. A local metric set of $G$ of cardinality $\mathop {\rm lmd}(G)$ is a local metric basis of $G$. We characterize all nontrivial connected graphs of order $n$ having local metric dimension $1$, $n-2$, or $n-1$ and establish sharp bounds for the local metric dimension of a graph in terms of well-known graphical parameters. Several realization results are presented along with other results on the number of local metric bases of a connected graph.
LA - eng
KW - distance; local metric set; local metric dimension; distance; local metric set; local metric dimension
UR - http://eudml.org/doc/38128
ER -
References
top- Anderson, M., Barrientos, C., Brigham, R. C., Carrington, J. R., Kronman, M., Vitray, R. P., Yellen, J., Irregular colorings of some graph classes, Bull. Inst. Combin. Appl. 55 (2009), 105-119. (2009) Zbl1177.05035MR2478212
- Balister, P. N., Győri, E., Lehel, J., Schelp, R. H., 10.1137/S0895480102414107, SIAM J. Discrete Math. 21 (2007), 237-250. (2007) MR2299707DOI10.1137/S0895480102414107
- Burris, A. C., Schelp, R. H., 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C, J. Graph Theory. 26 (1997), 73-82. (1997) Zbl0886.05068MR1469354DOI10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C
- Caceres, J., Hernando, C., Mora, M., Pelayo, I. M., Puertas, M. L., Seara, C., Wood, D. R., 10.1137/050641867, SIAM J. Discr. Math. 21 (2007), 423-441. (2007) Zbl1139.05314MR2318676DOI10.1137/050641867
- Chartrand, G., Eroh, L., Johnson, M. A., Oellermann, O. R., 10.1016/S0166-218X(00)00198-0, Discrete Appl. Math. 105 (2000), 99-113. (2000) Zbl0958.05042MR1780464DOI10.1016/S0166-218X(00)00198-0
- Chartrand, G., Lesniak, L., Zhang, P., Graphs & Digraphs: Fifth Edition, Chapman & Hall/CRC, Boca Raton, FL (2010). (2010) MR2766107
- Chartrand, G., Lesniak, L., VanderJagt, D. W., Zhang, P., 10.7151/dmgt.1390, Discuss. Math. Graph Theory. 28 (2008), 35-57. (2008) Zbl1235.05049MR2438039DOI10.7151/dmgt.1390
- Chartrand, G., Okamoto, F., Rasmussen, C. W., Zhang, P., 10.7151/dmgt.1463, Discuss. Math. Graph Theory. 29 (2009), 545-561. (2009) Zbl1193.05073MR2642800DOI10.7151/dmgt.1463
- Chartrand, G., Okamoto, F., Salehi, E., Zhang, P., The multiset chromatic number of a graph, Math. Bohem. 134 (2009), 191-209. (2009) Zbl1212.05071MR2535147
- Chartrand, G., Okamoto, F., Zhang, P., The metric chromatic number of a graph, Australas. J. Combin. 44 (2009), 273-286. (2009) Zbl1181.05038MR2527016
- Chartrand, G., Okamoto, F., Zhang, P., Neighbor-distinguishing vertex colorings of graphs, J. Combin. Math. Combin. Comput (to appear). MR2675903
- Chartrand, G., Zhang, P., Chromatic Graph Theory, Chapman & Hall/CRC Press, Boca Raton, FL (2009). (2009) Zbl1169.05001MR2450569
- Harary, F., Melter, R. A., On the metric dimension of a graph, Ars Combin. 2 (1976), 191-195. (1976) Zbl0349.05118MR0457289
- Harary, F., Plantholt, M., The point-distinguishing chromatic index, Graphs and Applications. Wiley, New York (1985), 147-162. (1985) Zbl0562.05023MR0778404
- Hernando, C., Mora, M., Pelayo, I. M., Seara, C., Wood, D. R., Extremal graph theory for the metric dimension and diameter, Electronic Notes in Discrete Mathematics 29 (2007), 339-343. (2007)
- Karoński, M., Łuczak, T., Thomason, A., 10.1016/j.jctb.2003.12.001, J. Combin. Theory Ser. B. 91 (2004), 151-157. (2004) Zbl1042.05045MR2047539DOI10.1016/j.jctb.2003.12.001
- Khuller, A., Raghavachari, B., Rosenfeld, A., 10.1016/0166-218X(95)00106-2, Discr. Appl. Math. 70 (1996), 217-229. (1996) Zbl0865.68090MR1410574DOI10.1016/0166-218X(95)00106-2
- Radcliffe, M., Zhang, P., Irregular colorings of graphs, Bull. Inst. Combin. Appl. 49 (2007), 41-59. (2007) Zbl1119.05047MR2285522
- Saenpholphat, V., Resolvability in Graphs, Ph.D. Dissertation, Western Michigan University (2003). (2003) MR2704307
- Slater, P. J., Leaves of trees, Congress. Numer. 14 (1975), 549-559. (1975) Zbl0316.05102MR0422062
- Slater, P. J., Dominating and reference sets in graphs, J. Math. Phys. Sci. 22 (1988), 445-455. (1988) MR0966610
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.